Markov Chain Process Theory And Cases

Download Markov Chain Process Theory And Cases PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Markov Chain Process Theory And Cases book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Markov Chain Process (Theory and Cases)

Author: Carlos Polanco
language: en
Publisher: Bentham Science Publishers
Release Date: 2023-06-05
Markov Chain Process: Theory and Cases is designed for students of natural and formal sciences. It explains the fundamentals related to a stochastic process that satisfies the Markov property. It presents 10 structured chapters that provide a comprehensive insight into the complexity of this subject by presenting many examples and case studies that will help readers to deepen their acquired knowledge and relate learned theory to practice. This book is divided into four parts. The first part thoroughly examines the definitions of probability, independent events, mutually (and not mutually) exclusive events, conditional probability, and Bayes’ theorem, which are essential elements in Markov’s theory. The second part examines the elements of probability vectors, stochastic matrices, regular stochastic matrices, and fixed points. The third part presents multiple cases in various disciplines: Predictive computational science, Urban complex systems, Computational finance, Computational biology, Complex systems theory, and Computational Science in Engineering. The last part introduces learners to Fortran 90 programs and Linux scripts. To make the comprehension of Markov Chain concepts easier, all the examples, exercises, and case studies presented in this book are completely solved and given in a separate section. This book serves as a textbook (either primary or auxiliary) for students required to understand Markov Chains in their courses, and as a reference book for researchers who want to learn about methods that involve Markov Processes.
Stochastic Processes: Theory and Methods

Author: D N Shanbhag
language: en
Publisher: Gulf Professional Publishing
Release Date: 2001
This volume in the series contains chapters on areas such as pareto processes, branching processes, inference in stochastic processes, Poisson approximation, Levy processes, and iterated random maps and some classes of Markov processes. Other chapters cover random walk and fluctuation theory, a semigroup representation and asymptomatic behavior of certain statistics of the Fisher-Wright-Moran coalescent, continuous-time ARMA processes, record sequence and their applications, stochastic networks with product form equilibrium, and stochastic processes in insurance and finance. Other subjects include renewal theory, stochastic processes in reliability, supports of stochastic processes of multiplicity one, Markov chains, diffusion processes, and Ito's stochastic calculus and its applications. c. Book News Inc.
Point Process Theory and Applications

Author: Martin Jacobsen
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-07-27
Mathematically rigorous exposition of the basic theory of marked point processes and piecewise deterministic stochastic processes Point processes are constructed from scratch with detailed proofs Includes applications with examples and exercises in survival analysis, branching processes, ruin probabilities, sports (soccer), finance and risk management, and queueing theory Accessible to a wider cross-disciplinary audience