Making Sense Of Multivariate Data Analysis

Download Making Sense Of Multivariate Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Making Sense Of Multivariate Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Making Sense of Multivariate Data Analysis

A short introduction to the subject, this text is aimed at students & practitioners in the behavioural & social sciences. It offers a conceptual overview of the foundations of MDA & of a range of specific techniques including multiple regression, logistic regression & log-linear analysis.
Making Sense of Data II

A hands-on guide to making valuable decisions from data using advanced data mining methods and techniques This second installment in the Making Sense of Data series continues to explore a diverse range of commonly used approaches to making and communicating decisions from data. Delving into more technical topics, this book equips readers with advanced data mining methods that are needed to successfully translate raw data into smart decisions across various fields of research including business, engineering, finance, and the social sciences. Following a comprehensive introduction that details how to define a problem, perform an analysis, and deploy the results, Making Sense of Data II addresses the following key techniques for advanced data analysis: Data Visualization reviews principles and methods for understanding and communicating data through the use of visualization including single variables, the relationship between two or more variables, groupings in data, and dynamic approaches to interacting with data through graphical user interfaces. Clustering outlines common approaches to clustering data sets and provides detailed explanations of methods for determining the distance between observations and procedures for clustering observations. Agglomerative hierarchical clustering, partitioned-based clustering, and fuzzy clustering are also discussed. Predictive Analytics presents a discussion on how to build and assess models, along with a series of predictive analytics that can be used in a variety of situations including principal component analysis, multiple linear regression, discriminate analysis, logistic regression, and Naïve Bayes. Applications demonstrates the current uses of data mining across a wide range of industries and features case studies that illustrate the related applications in real-world scenarios. Each method is discussed within the context of a data mining process including defining the problem and deploying the results, and readers are provided with guidance on when and how each method should be used. The related Web site for the series (www.makingsenseofdata.com) provides a hands-on data analysis and data mining experience. Readers wishing to gain more practical experience will benefit from the tutorial section of the book in conjunction with the TraceisTM software, which is freely available online. With its comprehensive collection of advanced data mining methods coupled with tutorials for applications in a range of fields, Making Sense of Data II is an indispensable book for courses on data analysis and data mining at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals who are interested in learning how to accomplish effective decision making from data and understanding if data analysis and data mining methods could help their organization.
Making Sense of Data

Author: J. H. Abramson
language: en
Publisher: Oxford University Press
Release Date: 2001-09-06
This self-instructional manual on the interpretation and use of epidemiologic data deals with the basic concepts and skills needed for the appraisal of published reports or one's own findings. Applications in clinical medicine, public health, community medicine, and research are all taken into consideration. Making Sense of Data is designed as a workbook of short exercises and instructional self-tests that introduce fundamental approaches and procedures in data interpretation and develop competency in working with epidemiologic tools. Basic concepts are presented in the first section, which also demonstrates the step-by-step assessment of data. The next section discusses rates and other simple measures, and the third shows how to judge their accuracy. Section IV and V deal with more complex issues of associations between variables and the appraisal of cause-effect relationships. Section VI deals with meta-analysis (the critical review and integration of the findings from separate studies) and section VII with the questions to be asked before deciding to apply study results in practice. Numerous changes have been made in this edition, including the addition of a section on the practical application of epidemiological findings, discussions of new topics (Cox proportional hazards regression, qualitative studies, ROC curves), and fresh examples.