Make Your First Gan With Pytorch


Download Make Your First Gan With Pytorch PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Make Your First Gan With Pytorch book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Make Your First GAN With PyTorch


Make Your First GAN With PyTorch

Author: Tariq Rashid

language: en

Publisher: Independently Published

Release Date: 2020-03-14


DOWNLOAD





A gentle introduction to Generative Adversarial Networks, and a practical step-by-step tutorial on making your own with PyTorch.This beginner-friendly guide will give you hands-on experience: * understanding PyTorch basics * developing your first PyTorch neural network * exploring neural network refinements to improve performance * introduce CUDA GPU accelerationIt will introduce GANs, one of the most exciting areas of machine learning: * introducing the concept step-by-step, in plain English * coding the simplest GAN to develop a good workflow * growing our confidence with an MNIST GAN * progressing to develop a GAN to generate full-colour human faces * experiencing how GANs fail, exploring remedies and improving GAN performance and stabilityBeyond the very basics, readers can explore more sophisticated GANs: * convolutional GANs for generated higher quality images * conditional GANs for generated images of a desired classThe appendices will be useful for students of machine learning as they explain themes often skipped over in many courses: * calculating ideal loss values for balanced GANs * probability distributions and sampling them to create images * carefully chosen examples illustrating how convolutions work * a brief explanation of why gradient descent isn't suited to adversarial machine learning

Deep Learning with PyTorch


Deep Learning with PyTorch

Author: Luca Pietro Giovanni Antiga

language: en

Publisher: Simon and Schuster

Release Date: 2020-07-01


DOWNLOAD





“We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production

Programming PyTorch for Deep Learning


Programming PyTorch for Deep Learning

Author: Ian Pointer

language: en

Publisher: O'Reilly Media

Release Date: 2019-09-20


DOWNLOAD





Take the next steps toward mastering deep learning, the machine learning method that’s transforming the world around us by the second. In this practical book, you’ll get up to speed on key ideas using Facebook’s open source PyTorch framework and gain the latest skills you need to create your very own neural networks. Ian Pointer shows you how to set up PyTorch on a cloud-based environment, then walks you through the creation of neural architectures that facilitate operations on images, sound, text,and more through deep dives into each element. He also covers the critical concepts of applying transfer learning to images, debugging models, and PyTorch in production. Learn how to deploy deep learning models to production Explore PyTorch use cases from several leading companies Learn how to apply transfer learning to images Apply cutting-edge NLP techniques using a model trained on Wikipedia Use PyTorch’s torchaudio library to classify audio data with a convolutional-based model Debug PyTorch models using TensorBoard and flame graphs Deploy PyTorch applications in production in Docker containers and Kubernetes clusters running on Google Cloud