Machine Learning Toolbox For Social Scientists


Download Machine Learning Toolbox For Social Scientists PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning Toolbox For Social Scientists book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Machine Learning Toolbox for Social Scientists


Machine Learning Toolbox for Social Scientists

Author: Yigit Aydede

language: en

Publisher: CRC Press

Release Date: 2023-09-22


DOWNLOAD





Machine Learning Toolbox for Social Scientists covers predictive methods with complementary statistical "tools" that make it mostly self-contained. The inferential statistics is the traditional framework for most data analytics courses in social science and business fields, especially in Economics and Finance. The new organization that this book offers goes beyond standard machine learning code applications, providing intuitive backgrounds for new predictive methods that social science and business students can follow. The book also adds many other modern statistical tools complementary to predictive methods that cannot be easily found in "econometrics" textbooks: nonparametric methods, data exploration with predictive models, penalized regressions, model selection with sparsity, dimension reduction methods, nonparametric time-series predictions, graphical network analysis, algorithmic optimization methods, classification with imbalanced data, and many others. This book is targeted at students and researchers who have no advanced statistical background, but instead coming from the tradition of "inferential statistics". The modern statistical methods the book provides allows it to be effectively used in teaching in the social science and business fields. Key Features: The book is structured for those who have been trained in a traditional statistics curriculum. There is one long initial section that covers the differences in "estimation" and "prediction" for people trained for causal analysis. The book develops a background framework for Machine learning applications from Nonparametric methods. SVM and NN simple enough without too much detail. It’s self-sufficient. Nonparametric time-series predictions are new and covered in a separate section. Additional sections are added: Penalized Regressions, Dimension Reduction Methods, and Graphical Methods have been increasing in their popularity in social sciences.

Machine Learning Toolbox for Social Scientists


Machine Learning Toolbox for Social Scientists

Author: Yigit Aydede

language: en

Publisher:

Release Date: 2023


DOWNLOAD





Handbook of Computational Social Science, Volume 2


Handbook of Computational Social Science, Volume 2

Author: Uwe Engel

language: en

Publisher: Taylor & Francis

Release Date: 2021-11-10


DOWNLOAD





The Handbook of Computational Social Science is a comprehensive reference source for scholars across multiple disciplines. It outlines key debates in the field, showcasing novel statistical modeling and machine learning methods, and draws from specific case studies to demonstrate the opportunities and challenges in CSS approaches. The Handbook is divided into two volumes written by outstanding, internationally renowned scholars in the field. This second volume focuses on foundations and advances in data science, statistical modeling, and machine learning. It covers a range of key issues, including the management of big data in terms of record linkage, streaming, and missing data. Machine learning, agent-based and statistical modeling, as well as data quality in relation to digital trace and textual data, as well as probability, non-probability, and crowdsourced samples represent further foci. The volume not only makes major contributions to the consolidation of this growing research field, but also encourages growth into new directions. With its broad coverage of perspectives (theoretical, methodological, computational), international scope, and interdisciplinary approach, this important resource is integral reading for advanced undergraduates, postgraduates, and researchers engaging with computational methods across the social sciences, as well as those within the scientific and engineering sectors.