Machine Learning Projects For Mobile Applications

Download Machine Learning Projects For Mobile Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning Projects For Mobile Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Machine Learning Projects for Mobile Applications

Author: Karthikeyan NG
language: en
Publisher: Packt Publishing Ltd
Release Date: 2018-10-31
Bring magic to your mobile apps using TensorFlow Lite and Core ML Key FeaturesExplore machine learning using classification, analytics, and detection tasks.Work with image, text and video datasets to delve into real-world tasksBuild apps for Android and iOS using Caffe, Core ML and Tensorflow LiteBook Description Machine learning is a technique that focuses on developing computer programs that can be modified when exposed to new data. We can make use of it for our mobile applications and this book will show you how to do so. The book starts with the basics of machine learning concepts for mobile applications and how to get well equipped for further tasks. You will start by developing an app to classify age and gender using Core ML and Tensorflow Lite. You will explore neural style transfer and get familiar with how deep CNNs work. We will also take a closer look at Google’s ML Kit for the Firebase SDK for mobile applications. You will learn how to detect handwritten text on mobile. You will also learn how to create your own Snapchat filter by making use of facial attributes and OpenCV. You will learn how to train your own food classification model on your mobile; all of this will be done with the help of deep learning techniques. Lastly, you will build an image classifier on your mobile, compare its performance, and analyze the results on both mobile and cloud using TensorFlow Lite with an RCNN. By the end of this book, you will not only have mastered the concepts of machine learning but also learned how to resolve problems faced while building powerful apps on mobiles using TensorFlow Lite, Caffe2, and Core ML. What you will learnDemystify the machine learning landscape on mobileAge and gender detection using TensorFlow Lite and Core MLUse ML Kit for Firebase for in-text detection, face detection, and barcode scanningCreate a digit classifier using adversarial learningBuild a cross-platform application with face filters using OpenCVClassify food using deep CNNs and TensorFlow Lite on iOS Who this book is for Machine Learning Projects for Mobile Applications is for you if you are a data scientist, machine learning expert, deep learning, or AI enthusiast who fancies mastering machine learning and deep learning implementation with practical examples using TensorFlow Lite and CoreML. Basic knowledge of Python programming language would be an added advantage.
Mobile Artificial Intelligence Projects

Author: Karthikeyan NG
language: en
Publisher: Packt Publishing Ltd
Release Date: 2019-03-30
Learn to build end-to-end AI apps from scratch for Android and iOS using TensorFlow Lite, CoreML, and PyTorch Key FeaturesBuild practical, real-world AI projects on Android and iOSImplement tasks such as recognizing handwritten digits, sentiment analysis, and moreExplore the core functions of machine learning, deep learning, and mobile visionBook Description We’re witnessing a revolution in Artificial Intelligence, thanks to breakthroughs in deep learning. Mobile Artificial Intelligence Projects empowers you to take part in this revolution by applying Artificial Intelligence (AI) techniques to design applications for natural language processing (NLP), robotics, and computer vision. This book teaches you to harness the power of AI in mobile applications along with learning the core functions of NLP, neural networks, deep learning, and mobile vision. It features a range of projects, covering tasks such as real-estate price prediction, recognizing hand-written digits, predicting car damage, and sentiment analysis. You will learn to utilize NLP and machine learning algorithms to make applications more predictive, proactive, and capable of making autonomous decisions with less human input. In the concluding chapters, you will work with popular libraries, such as TensorFlow Lite, CoreML, and PyTorch across Android and iOS platforms. By the end of this book, you will have developed exciting and more intuitive mobile applications that deliver a customized and more personalized experience to users. What you will learnExplore the concepts and fundamentals of AI, deep learning, and neural networksImplement use cases for machine vision and natural language processingBuild an ML model to predict car damage using TensorFlowDeploy TensorFlow on mobile to convert speech to textImplement GAN to recognize hand-written digitsDevelop end-to-end mobile applications that use AI principlesWork with popular libraries, such as TensorFlow Lite, CoreML, and PyTorchWho this book is for Mobile Artificial Intelligence Projects is for machine learning professionals, deep learning engineers, AI engineers, and software engineers who want to integrate AI technology into mobile-based platforms and applications. Sound knowledge of machine learning and experience with any programming language is all you need to get started with this book.
Practical Deep Learning for Cloud, Mobile, and Edge

Whether you’re a software engineer aspiring to enter the world of deep learning, a veteran data scientist, or a hobbyist with a simple dream of making the next viral AI app, you might have wondered where to begin. This step-by-step guide teaches you how to build practical deep learning applications for the cloud, mobile, browsers, and edge devices using a hands-on approach. Relying on years of industry experience transforming deep learning research into award-winning applications, Anirudh Koul, Siddha Ganju, and Meher Kasam guide you through the process of converting an idea into something that people in the real world can use. Train, tune, and deploy computer vision models with Keras, TensorFlow, Core ML, and TensorFlow Lite Develop AI for a range of devices including Raspberry Pi, Jetson Nano, and Google Coral Explore fun projects, from Silicon Valley’s Not Hotdog app to 40+ industry case studies Simulate an autonomous car in a video game environment and build a miniature version with reinforcement learning Use transfer learning to train models in minutes Discover 50+ practical tips for maximizing model accuracy and speed, debugging, and scaling to millions of users