Machine Learning On Commodity Tiny Devices

Download Machine Learning On Commodity Tiny Devices PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning On Commodity Tiny Devices book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Machine Learning on Commodity Tiny Devices

This book aims at the tiny machine learning (TinyML) software and hardware synergy for edge intelligence applications. This book presents on-device learning techniques covering model-level neural network design, algorithm-level training optimization and hardware-level instruction acceleration. Analyzing the limitations of conventional in-cloud computing would reveal that on-device learning is a promising research direction to meet the requirements of edge intelligence applications. As to the cutting-edge research of TinyML, implementing a high-efficiency learning framework and enabling system-level acceleration is one of the most fundamental issues. This book presents a comprehensive discussion of the latest research progress and provides system-level insights on designing TinyML frameworks, including neural network design, training algorithm optimization and domain-specific hardware acceleration. It identifies the main challenges when deploying TinyML tasks in the real world and guides the researchers to deploy a reliable learning system. This book will be of interest to students and scholars in the field of edge intelligence, especially to those with sufficient professional Edge AI skills. It will also be an excellent guide for researchers to implement high-performance TinyML systems.
18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023)

Author: Pablo García Bringas
language: en
Publisher: Springer Nature
Release Date: 2023-08-30
This book of Advances in Intelligent and Soft Computing contains accepted papers presented at SOCO 2023 conference held in the beautiful and historic city of Salamanca (Spain) in September 2023. Soft computing represents a collection or set of computational techniques in machine learning, computer science, and some engineering disciplines, which investigate, simulate, and analyze very complex issues and phenomena. After a through peer-review process, the 18th SOCO 2023 International Program Committee selected 61 papers which are published in these conference proceedings and represents an acceptance rate of 60%. In this relevant edition, a particular emphasis was put on the organization of special sessions. Seven special sessions were organized related to relevant topics such as: Time Series Forecasting in Industrial and Environmental Applications, Technological Foundations and Advanced Applications of Drone Systems, Soft Computing Methods in Manufacturing and Management Systems, Efficiency and Explainability in Machine Learning and Soft Computing, Machine Learning and Computer Vision in Industry 4.0, Genetic and Evolutionary Computation in Real World and Industry, and Soft Computing and Hard Computing for a Data Science Process Model. The selection of papers was extremely rigorous to maintain the high quality of the conference. We want to thank the members of the Program Committees for their hard work during the reviewing process. This is a crucial process for creating a high-standard conference; the SOCO conference would not exist without their help.
Deep Learning for Computer Architects

Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Next we review representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloadsthemselves, we also detail the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, we present a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.