Machine Learning Methods For Engineering Application Development

Download Machine Learning Methods For Engineering Application Development PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning Methods For Engineering Application Development book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Machine Learning Methods for Engineering Application Development

Author: Prasad Lokulwar
language: en
Publisher: Bentham Science Publishers
Release Date: 2022-11-11
This book is a quick review of machine learning methods for engineeringapplications. It provides an introduction to the principles of machine learningand common algorithms in the first section. Proceeding chapters summarize andanalyze the existing scholarly work and discuss some general issues in this field.Next, it offers some guidelines on applying machine learning methods to softwareengineering tasks. Finally, it gives an outlook into some of the futuredevelopments and possibly new research areas of machine learning and artificialintelligence in general.Techniques highlighted in the book include: Bayesian models, supportvector machines, decision tree induction, regression analysis, and recurrent andconvolutional neural network. Finally, it also intends to be a reference book. Key Features:Describes real-world problems that can be solved using machine learningExplains methods for directly applying machine learning techniques to concrete real-world problemsExplains concepts used in Industry 4.0 platforms, including the use and integration of AI, ML, Big Data, NLP, and the Internet of Things (IoT). It does not require prior knowledge of the machine learning This book is meantto be an introduction to artificial intelligence (AI), machine earning, and itsapplications in Industry 4.0. It explains the basic mathematical principlesbut is intended to be understandable for readers who do not have a backgroundin advanced mathematics.
Machine Learning Applications in Software Engineering

A collection of previously published articles from a variety of publications.
Machine Learning Engineering in Action

Field-tested tips, tricks, and design patterns for building machine learning projects that are deployable, maintainable, and secure from concept to production. In Machine Learning Engineering in Action, you will learn: Evaluating data science problems to find the most effective solution Scoping a machine learning project for usage expectations and budget Process techniques that minimize wasted effort and speed up production Assessing a project using standardized prototyping work and statistical validation Choosing the right technologies and tools for your project Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices Ferrying a machine learning project from your data science team to your end users is no easy task. Machine Learning Engineering in Action will help you make it simple. Inside, you'll find fantastic advice from veteran industry expert Ben Wilson, Principal Resident Solutions Architect at Databricks. Ben introduces his personal toolbox of techniques for building deployable and maintainable production machine learning systems. You'll learn the importance of Agile methodologies for fast prototyping and conferring with stakeholders, while developing a new appreciation for the importance of planning. Adopting well-established software development standards will help you deliver better code management, and make it easier to test, scale, and even reuse your machine learning code. Every method is explained in a friendly, peer-to-peer style and illustrated with production-ready source code. About the technology Deliver maximum performance from your models and data. This collection of reproducible techniques will help you build stable data pipelines, efficient application workflows, and maintainable models every time. Based on decades of good software engineering practice, machine learning engineering ensures your ML systems are resilient, adaptable, and perform in production. About the book Machine Learning Engineering in Action teaches you core principles and practices for designing, building, and delivering successful machine learning projects. You'll discover software engineering techniques like conducting experiments on your prototypes and implementing modular design that result in resilient architectures and consistent cross-team communication. Based on the author's extensive experience, every method in this book has been used to solve real-world projects. What's inside Scoping a machine learning project for usage expectations and budget Choosing the right technologies for your design Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices About the reader For data scientists who know machine learning and the basics of object-oriented programming. About the author Ben Wilson is Principal Resident Solutions Architect at Databricks, where he developed the Databricks Labs AutoML project, and is an MLflow committer.