Machine Learning Fundamentals In Python

Download Machine Learning Fundamentals In Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning Fundamentals In Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Mastering Deep Learning Fundamentals with Python

Author: Richard Wilson
language: en
Publisher: Independently Published
Release Date: 2019-07-14
★★Buy the Paperback Version of this Book and get the Kindle Book version for FREE ★★ Step into the fascinating world of data science.. You to participate in the revolution that brings artificial intelligence back to the heart of our society, thanks to data scientists. Data science consists in translating problems of any other nature into quantitative modeling problems, solved by processing algorithms. This book, designed for anyone wishing to learn Deep Learning. This book presents the main techniques: deep neural networks, able to model all kinds of data, convolution networks, able to classify images, segment them and discover the objects or people who are there, recurring networks, it contains sample code so that the reader can easily test and run the programs. On the program: Deep learning Neural Networks and Deep Learning Deep Learning Parameters and Hyper-parameters Deep Neural Networks Layers Deep Learning Activation Functions Convolutional Neural Network Python Data Structures Best practices in Python and Zen of Python Installing Python Python These are some of the topics covered in this book: fundamentals of deep learning fundamentals of probability fundamentals of statistics fundamentals of linear algebra introduction to machine learning and deep learning fundamentals of machine learning fundamentals of neural networks and deep learning deep learning parameters and hyper-parameters deep neural networks layers deep learning activation functions convolutional neural network Deep learning in practice (in jupyter notebooks) python data structures best practices in python and zen of python installing python The following are the objectives of this book: To help you understand deep learning in detail To help you know how to get started with deep learning in Python by setting up the coding environment. To help you transition from a deep learning Beginner to a Professional. To help you learn how to develop a complete and functional artificial neural network model in Python on your own. And more Get this book now to learn more about -- Deep learning in Python by setting up the coding environment.!
Python AI Programming

This book aspires young graduates and programmers to become AI engineers and enter the world of artificial intelligence by combining powerful Python programming with artificial intelligence. Beginning with the fundamentals of Python programming, the book gradually progresses to machine learning, where readers learn to implement Python in developing predictive models. The book provides a clear and accessible explanation of machine learning, incorporating practical examples and exercises that strengthen understanding. We go deep into deep learning, another vital component of AI. Readers gain a thorough understanding of how Python's frameworks and libraries can be used to create sophisticated neural networks and algorithms, which are required for tasks such as image and speech recognition. Natural Language Processing is also covered in the book, with fundamental concepts and techniques for interpreting and generating human-like language covered. The book's focus on computer vision and reinforcement learning is distinctive, presenting these cutting-edge AI fields in an approachable manner. Readers will learn how to use Python's intuitive programming paradigm to create systems that interpret visual data and make intelligent decisions based on environmental interactions. The book focuses on ethical AI development and responsible programming, emphasizing the importance of developing AI that is fair, transparent, and accountable. Each chapter is designed to improve learning by including practical examples, case studies, and exercises that provide hands-on experience. This book is an excellent starting point for anyone interested in becoming an AI engineer, providing the necessary foundational knowledge and skills to delve into the fascinating world of artificial intelligence. Key Learnings Explore Python basics and AI integration for real-world application and career advancement. Experience the power of Python in AI with practical machine learning techniques. Practice Python's deep learning tools for innovative AI solution development. Dive into NLP with Python to revolutionize data interpretation and communication strategies. Simple yet practical understanding of reinforcement learning for strategic AI decision making. Uncover ethical AI development and frameworks, and concepts of responsible and trustworthy AI. Harness Python's capabilities for creating AI applications with a focus on fairness and bias. Table of Content Introduction to Artificial Intelligence Python for AI Data as Fuel for AI Machine Learning Foundation Essentials of Deep Learning NLP and Computer Vision Hands-on Reinforcement Learning Ethics to AI
Artificial Intelligence and Machine Learning Fundamentals

Create AI applications in Python and lay the foundations for your career in data science Key FeaturesPractical examples that explain key machine learning algorithmsExplore neural networks in detail with interesting examplesMaster core AI concepts with engaging activitiesBook Description Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Python and discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples. As you make your way through the book, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore's law. By the end of this book, you will be confident when it comes to building your own AI applications with your newly acquired skills! What you will learnUnderstand the importance, principles, and fields of AIImplement basic artificial intelligence concepts with PythonApply regression and classification concepts to real-world problemsPerform predictive analysis using decision trees and random forestsCarry out clustering using the k-means and mean shift algorithmsUnderstand the fundamentals of deep learning via practical examplesWho this book is for Artificial Intelligence and Machine Learning Fundamentals is for software developers and data scientists who want to enrich their projects with machine learning. You do not need any prior experience in AI. However, it’s recommended that you have knowledge of high school-level mathematics and at least one programming language (preferably Python).