Machine Learning For Materials Science


Download Machine Learning For Materials Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning For Materials Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Machine Learning in Materials Science


Machine Learning in Materials Science

Author: Keith T. Butler

language: en

Publisher: American Chemical Society

Release Date: 2022-06-16


DOWNLOAD





Machine Learning for Materials Science provides the fundamentals and useful insight into where Machine Learning (ML) will have the greatest impact for the materials science researcher. This digital primer provides example methods for ML applied to experiments and simulations, including the early stages of building an ML solution for a materials science problem, concentrating on where and how to get data and some of the considerations when choosing an approach. The authors demonstrate how to build more robust models, how to make sure that your colleagues trust the results, and how to use ML to accelerate or augment simulations, by introducing methods in which ML can be applied to analyze and process experimental data. They also cover how to build integrated closed-loop experiments where ML is used to plan the course of a materials optimization experiment and how ML can be utilized in the discovery of materials on computers.

Materials Data Science


Materials Data Science

Author: Stefan Sandfeld

language: en

Publisher: Springer Nature

Release Date: 2024-05-08


DOWNLOAD





This text covers all of the data science, machine learning, and deep learning topics relevant to materials science and engineering, accompanied by numerous examples and applications. Almost all methods and algorithms introduced are implemented “from scratch” using Python and NumPy. The book starts with an introduction to statistics and probabilities, explaining important concepts such as random variables and probability distributions, Bayes’ theorem and correlations, sampling techniques, and exploratory data analysis, and puts them in the context of materials science and engineering. Therefore, it serves as a valuable primer for both undergraduate and graduate students, as well as a review for research scientists and practicing engineers. The second part provides an in-depth introduction of (statistical) machine learning. It begins with outlining fundamental concepts and proceeds to explore a variety of supervised learning techniques for regression and classification, including advanced methods such as kernel regression and support vector machines. The section on unsupervised learning emphasizes principal component analysis, and also covers manifold learning (t-SNE and UMAP) and clustering techniques. Additionally, feature engineering, feature importance, and cross-validation are introduced. The final part on neural networks and deep learning aims to promote an understanding of these methods and dispel misconceptions that they are a “black box”. The complexity gradually increases until fully connected networks can be implemented. Advanced techniques and network architectures, including GANs, are implemented “from scratch” using Python and NumPy, which facilitates a comprehensive understanding of all the details and enables the user to conduct their own experiments in Deep Learning.

Machine Learning for Materials Discovery


Machine Learning for Materials Discovery

Author: N. M. Anoop Krishnan

language: en

Publisher: Springer Nature

Release Date: 2024-05-06


DOWNLOAD





Focusing on the fundamentals of machine learning, this book covers broad areas of data-driven modeling, ranging from simple regression to advanced machine learning and optimization methods for applications in materials modeling and discovery. The book explains complex mathematical concepts in a lucid manner to ensure that readers from different materials domains are able to use these techniques successfully. A unique feature of this book is its hands-on aspect—each method presented herein is accompanied by a code that implements the method in open-source platforms such as Python. This book is thus aimed at graduate students, researchers, and engineers to enable the use of data-driven methods for understanding and accelerating the discovery of novel materials.