Machine Learning For Low Latency Communications


Download Machine Learning For Low Latency Communications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning For Low Latency Communications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Machine Learning for Low-Latency Communications


Machine Learning for Low-Latency Communications

Author: Yong Zhou

language: en

Publisher: Elsevier

Release Date: 2024-10-10


DOWNLOAD





Machine Learning for Low-Latency Communications presents the principles and practice of various deep learning methodologies for mitigating three critical latency components: access latency, transmission latency, and processing latency. In particular, the book develops learning to estimate methods via algorithm unrolling and multiarmed bandit for reducing access latency by enlarging the number of concurrent transmissions with the same pilot length. Task-oriented learning to compress methods based on information bottleneck are given to reduce the transmission latency via avoiding unnecessary data transmission. Lastly, three learning to optimize methods for processing latency reduction are given which leverage graph neural networks, multi-agent reinforcement learning, and domain knowledge. Low-latency communications attracts considerable attention from both academia and industry, given its potential to support various emerging applications such as industry automation, autonomous vehicles, augmented reality and telesurgery. Despite the great promise, achieving low-latency communications is critically challenging. Supporting massive connectivity incurs long access latency, while transmitting high-volume data leads to substantial transmission latency. - Presents the challenges and opportunities of leveraging data and model-driven machine learning methodologies for achieving low-latency communications - Explains the principles and practices of modern machine learning algorithms (e.g., algorithm unrolling, multiarmed bandit, graph neural network, and multi-agent reinforcement learning) for achieving low-latency communications - Gives design, modeling, and optimization methods for low-latency communications that apply appropriate learning methods to solve longstanding problems - Provides full details of the simulation setup and benchmarking algorithms, with downloadable code - Outlines future research challenges and directions

Machine Learning for Future Wireless Communications


Machine Learning for Future Wireless Communications

Author: Fa-Long Luo

language: en

Publisher: John Wiley & Sons

Release Date: 2020-02-10


DOWNLOAD





A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.

Machine Learning and Intelligent Communications


Machine Learning and Intelligent Communications

Author: Xiangping Bryce Zhai

language: en

Publisher: Springer Nature

Release Date: 2019-10-27


DOWNLOAD





This volume constitutes the refereed post-conference proceedings of the Fourth International Conference on Machine Learning and Intelligent Communications, MLICOM 2019, held in Nanjing, China, in August 2019. The 65 revised full papers were carefully selected from 114 submissions. The papers are organized thematically in machine learning, intelligent positioning and navigation, intelligent multimedia processing and security, wireless mobile network and security, cognitive radio and intelligent networking, IoT, intelligent satellite communications and networking, green communication and intelligent networking, ad-hoc and sensor networks, resource allocation in wireless and cloud networks, signal processing in wireless and optical communications, and intelligent cooperative communications and networking.


Recent Search