Machine Learning For Jax


Download Machine Learning For Jax PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning For Jax book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Deep Learning with JAX


Deep Learning with JAX

Author: Grigory Sapunov

language: en

Publisher: Simon and Schuster

Release Date: 2024-10-29


DOWNLOAD





"The JAX numerical computing library tackles the core performance challenges at the heart of deep learning and other scientific computing tasks. By combining Google's Accelerated Linear Algebra platform (XLA) with a hyper-optimized version of NumPy and a variety of other high-performance features, JAX delivers a huge performance boost in low-level computations and transformations. Deep learning with JAX is a hands-on guide to using JAX for deep learning and other mathematically-intensive applications. Google Developer Expert Grigory Sapunov steadily builds your understanding of JAX's concepts. The engaging examples introduce the fundamental concepts on which JAX relies and then show you how to apply them to real-world tasks. You'll learn how to use JAX's ecosystem of high-level libraries and modules, and also how to combine TensorFlow and PyTorch with JAX for data loading and deployment" --Publisher's description.

Machine Learning for JAX


Machine Learning for JAX

Author: GILBERTO. NEAL

language: en

Publisher: Independently Published

Release Date: 2025-02-27


DOWNLOAD





Machine learning is evolving rapidly, and efficiency is more critical than ever. Machine Learning for JAX is your ultimate guide to leveraging JAX for high-performance deep learning, large-scale AI training, and cutting-edge research. Whether you're a researcher, engineer, or AI enthusiast, this book will equip you with the tools to build faster, scalable, and optimized models using JAX's powerful automatic differentiation, JIT compilation, and GPU/TPU acceleration. This book provides comprehensive and hands-on coverage of JAX, from the fundamentals of numerical computing to advanced AI applications, including reinforcement learning, large language models (LLMs), and distributed training. You'll explore real-world industry use cases, optimize AI workflows with pmap and pjit, and learn how to handle massive datasets efficiently. Through detailed explanations, real-world examples, and working code implementations, you'll gain a deep practical understanding of JAX and its role in accelerating machine learning. Each chapter breaks down complex topics in an easy-to-follow manner, ensuring that both beginners and experienced developers can harness the full potential of JAX. What You Will Learn: Fundamentals of JAX and how it differs from NumPy and TensorFlow JIT compilation and vectorization for massive speedups Optimization techniques using SGD, Adam, and RMSprop in JAX Distributed training with multi-GPU and TPU acceleration Building and optimizing large-scale AI models like VAEs, GANs, and LLMs Using JAX in scientific computing and graph neural networks (GNNs) Real-world production use cases and how JAX integrates with Google's AI ecosystem Why This Book? Unlike other deep learning books, Machine Learning for JAX goes beyond the basics and focuses on practical, real-world applications. You won't just learn theory-you'll build, optimize, and scale AI models like a pro. Whether you're working on academic research, AI startups, or enterprise-scale ML systems, this book will elevate your machine learning capabilities. JAX is redefining the future of machine learning and AI research. Don't get left behind. Whether you're an ML researcher, software engineer, or data scientist, this book will empower you with the knowledge and skills to stay ahead in the AI revolution. Get your copy now and unlock the full power of JAX!

Google JAX Essentials


Google JAX Essentials

Author: Mei Wong

language: en

Publisher: GitforGits

Release Date: 2023-05-31


DOWNLOAD





"Google JAX Essentials" is a comprehensive guide designed for machine learning and deep learning professionals aiming to leverage the power and capabilities of Google's JAX library in their projects. Over the course of eight chapters, this book takes the reader from understanding the challenges of deep learning and numerical computations in the existing frameworks to the essentials of Google JAX, its functionalities, and how to leverage it in real-world machine learning and deep learning projects. The book starts by emphasizing the importance of numerical computing in ML and DL, demonstrating the limitations of standard libraries like NumPy, and introducing the solution offered by JAX. It then guides the reader through the installation of JAX on different computing environments like CPUs, GPUs, and TPUs, and its integration into existing ML and DL projects. The book details the advanced numerical operations and unique features of JAX, including JIT compilation, automatic differentiation, batched operations, and custom gradients. It illustrates how these features can be employed to write code that is both simpler and faster. The book also delves into parallel computation, the effective use of the vmap function, and the use of pmap for distributed computing. Lastly, the reader is walked through the practical application of JAX in training different deep learning models, including RNNs, CNNs, and Bayesian models, with an additional focus on performance-tuning strategies for JAX applications. Key Learnings Mastering the installation and configuration of JAX on various computing environments. Understanding the intricacies of JAX's advanced numerical operations. Harnessing the power of JIT compilation in JAX for accelerated computations. Implementing batched operations using the vmap function for efficient processing. Leveraging automatic differentiation and custom gradients in JAX. Proficiency in using the pmap function for distributed computing in JAX. Training different types of deep learning models using JAX. Applying performance tuning strategies to maximize JAX application efficiency. Integrating JAX into existing machine learning and deep learning projects. Complementing the official JAX documentation with practical, real-world applications. Table of Content Necessity for Google JAX Unravelling JAX Setting up JAX for Machine Learning and Deep Learning JAX for Numerical Computing Diving Deeper into Auto Differentiation and Gradients Efficient Batch Processing with JAX Power of Parallel Computing with JAX Training Neural Networks with JAX Audience This is must read for machine learning and deep learning professionals to be skilled with the most innovative deep learning library. Knowing Python and experience with machine learning is sufficient is desired to begin with this book.