Machine Learning Applications In Renewable Energy

Download Machine Learning Applications In Renewable Energy PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning Applications In Renewable Energy book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Applications of AI and IOT in Renewable Energy

Applications of AI and IOT in Renewable Energy provides a future vision of unexplored areas and applications for Artificial Intelligence and Internet of Things in sustainable energy systems. The ideas presented in this book are backed up by original, unpublished technical research results covering topics like smart solar energy systems, intelligent dc motors and energy efficiency study of electric vehicles. In all these areas and more, applications of artificial intelligence methods, including artificial neural networks, genetic algorithms, fuzzy logic and a combination of the above in hybrid systems are included. This book is designed to assist with developing low cost, smart and efficient solutions for renewable energy systems and is intended for researchers, academics and industrial communities engaged in the study and performance prediction of renewable energy systems. - Includes future applications of AI and IOT in renewable energy - Based on case studies to give each chapter real-life context - Provides advances in renewable energy using AI and IOT with technical detail and data
Machine Learning Applications in Renewable Energy

This book presents the need for Renewable Energy Technologies (RET) in the context of providing a solution for the depletion of conventional resources, protecting the environment and enhancing the economic situation of a country by way of providing employment opportunities for many people may be as employees in various roles or initiating their own enterprise. The book includes statistics on energy consumption changes over the past few decades from conventional to renewable energies. The future scenario of energy in view of technological advancements and the employment status past, present and future is indicated. The need and importance of standards for the efficient operation of renewable energy systems are explained. The various modern technologies that are enabling the successful implementation of RET are presented. The role of the public and government and the various financial schemes governments provide is highlighted. A few modern applications and those under development would enhance the standard of living. The statistics and situation of the various aspects in the wake of the COVID-19 pandemic before, during and future effects are discussed, for the overall benefit of one and all. The various methods of a cost analysis of a project are indicated. Solar system components and the cost estimation of the solar power system in the present-day market status are provided. The various grid integration issues have been discussed.
Application of Machine Learning and Deep Learning Methods to Power System Problems

Author: Morteza Nazari-Heris
language: en
Publisher: Springer Nature
Release Date: 2021-10-20
This book evaluates the role of innovative machine learning and deep learning methods in dealing with power system issues, concentrating on recent developments and advances that improve planning, operation, and control of power systems. Cutting-edge case studies from around the world consider prediction, classification, clustering, and fault/event detection in power systems, providing effective and promising solutions for many novel challenges faced by power system operators. Written by leading experts, the book will be an ideal resource for researchers and engineers working in the electrical power engineering and power system planning communities, as well as students in advanced graduate-level courses.