Machine Learning And Metaheuristics Methods And Analysis


Download Machine Learning And Metaheuristics Methods And Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning And Metaheuristics Methods And Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Machine Learning and Metaheuristics: Methods and Analysis


Machine Learning and Metaheuristics: Methods and Analysis

Author: Uma N. Dulhare

language: en

Publisher: Springer Nature

Release Date: 2023-11-01


DOWNLOAD





This book takes a balanced approach between theoretical understanding and real-time applications. All the topics included real-world problems which show how to explore, build, evaluate, and optimize machine learning models fusion with metaheuristic algorithms. Optimization algorithms classified into two broad categories as deterministic and probabilistic algorithms. The content of book elaborates optimization algorithms such as particle swarm optimization, ant colony optimization, whale search algorithm, and cuckoo search algorithm.

Metaheuristics in Machine Learning: Theory and Applications


Metaheuristics in Machine Learning: Theory and Applications

Author: Diego Oliva

language: en

Publisher: Springer Nature

Release Date: 2021-07-13


DOWNLOAD





This book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning. The chapters were classified based on the content; then, the sections are thematic. Different applications and implementations are included; in this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and is useful in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the book is useful for research from the evolutionary computation, artificial intelligence, and image processing communities.

Machine Learning and Metaheuristic Computation


Machine Learning and Metaheuristic Computation

Author: Erik Cuevas

language: en

Publisher: John Wiley & Sons

Release Date: 2024-11-05


DOWNLOAD





Learn to bridge the gap between machine learning and metaheuristic methods to solve problems in optimization approaches Few areas of technology have greater potential to revolutionize the globe than artificial intelligence. Two key areas of artificial intelligence, machine learning and metaheuristic computation, have an enormous range of individual and combined applications in computer science and technology. To date, these two complementary paradigms have not always been treated together, despite the potential of a combined approach which maximizes the utility and minimizes the drawbacks of both. Machine Learning and Metaheuristic Computation offers an introduction to both of these approaches and their joint applications. Both a reference text and a course, it is built around the popular Python programming language to maximize utility. It guides the reader gradually from an initial understanding of these crucial methods to an advanced understanding of cutting-edge artificial intelligence tools. The text also provides: Treatment suitable for readers with only basic mathematical training Detailed discussion of topics including dimensionality reduction, clustering methods, differential evolution, and more A rigorous but accessible vision of machine learning algorithms and the most popular approaches of metaheuristic optimization Machine Learning and Metaheuristic Computation is ideal for students, researchers, and professionals looking to combine these vital methods to solve problems in optimization approaches.