Machine Learning And Generative Ai In Smart Healthcare

Download Machine Learning And Generative Ai In Smart Healthcare PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning And Generative Ai In Smart Healthcare book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Machine Learning and Generative AI in Smart Healthcare

Author: Purushotham, Swarnalatha
language: en
Publisher: IGI Global
Release Date: 2024-08-28
The healthcare landscape is constantly evolving, and one of the most significant concerns that healthcare professionals deal with is understanding how to use biomedical intelligence to improve patient outcomes. With the increasing complexity of healthcare computing systems, including technologies like deep learning and the Internet of Things, it can be challenging to navigate these advancements. Machine Learning and Generative AI in Smart Healthcare is a practical tool for healthcare professionals, researchers, and policymakers who are seeking to implement biomedical intelligence solutions. It provides a clear roadmap for using prescriptive and predictive analytics in machine learning to enhance healthcare outcomes. Going beyond the basics, it delves into healthcare computing and networking complexities. By delving into topics such as data mining, disease prediction, and AI applications, deep learning approaches, decision support systems, and optimization techniques, this book equips readers with the practical knowledge they need to optimize healthcare delivery and management.
Artificial Intelligence in Healthcare

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Smart Healthcare Systems

About the Book The book provides details of applying intelligent mining techniques for extracting & pre-processing medical data from various sources, for application-based healthcare research. Moreover, different datasets are used, thereby exploring real-world case studies related to medical informatics. This book would provide insight to the learners about Machine Learning, Data Analytics, and Sustainable Computing. Salient Features of the Book Exhaustive coverage of Data Analysis using R Real-life healthcare models for: Visually Impaired Disease Diagnosis & Treatment options Applications of Big Data & Deep Learning in Healthcare Drug Discovery Complete guide to learn the knowledge discovery process, build versatile real life healthcare applications Compare & analyze recent healthcare technologies and trends Target Audience This book is mainly targeted at researchers, undergraduate, postgraduate students, academicians, and scholars working in the area of data science and its application to health sciences. Also, the book is beneficial for engineers who are engaged in developing actual healthcare solutions. ng in Healthcare Drug Discovery Complete guide to learn the knowledge discovery process, build versatile real life healthcare applications Compare & analyze recent healthcare technologies and trends Target Audience This book is mainly targeted at researchers, undergraduate, postgraduate students, academicians, and scholars working in the area of data science and its application to health sciences. Also, the book is beneficial for engineers who are engaged in developing actual healthcare solutions.