Lyapunov Functions In Differential Games

Download Lyapunov Functions In Differential Games PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lyapunov Functions In Differential Games book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Lyapunov Functions in Differential Games

A major step in differential games is determining an explicit form of the strategies of players who follow a certain optimality principle. To do this, the associated modification of Bellman dynamic programming problems has to be solved; for some differential games this could be Lyapunov functions whose "arsenal" has been supplied by stability theory. This approach, which combines dynamic programming and the Lyapunov function method, leads to coefficient criteria, or ratios of the game math model parameters with which optimal strategies of the players not only exist but their analytical form can be specified. In this book coefficient criteria are derived for numerous new and relevant problems in the theory of linear-quadratic multi-player differential games. Those criteria apply when the players formulate their strategies independently (non co-operative games) and use non-Nash equilibria or when the game model recognizes noise, perturbation and other uncertainties of which only their ranges are known (differential games under uncertainty). This text is useful for researchers, engineers and students of applied mathematics, control theory and the engineering sciences.
Non-cooperative Stochastic Differential Game Theory of Generalized Markov Jump Linear Systems

This book systematically studies the stochastic non-cooperative differential game theory of generalized linear Markov jump systems and its application in the field of finance and insurance. The book is an in-depth research book of the continuous time and discrete time linear quadratic stochastic differential game, in order to establish a relatively complete framework of dynamic non-cooperative differential game theory. It uses the method of dynamic programming principle and Riccati equation, and derives it into all kinds of existence conditions and calculating method of the equilibrium strategies of dynamic non-cooperative differential game. Based on the game theory method, this book studies the corresponding robust control problem, especially the existence condition and design method of the optimal robust control strategy. The book discusses the theoretical results and its applications in the risk control, option pricing, and the optimal investment problem in the field of finance and insurance, enriching the achievements of differential game research. This book can be used as a reference book for non-cooperative differential game study, for graduate students majored in economic management, science and engineering of institutions of higher learning.
Dynamics, Bifurcations and Control

This volume originates from the Third Nonlinear Control Workshop "- namics, Bifurcations and Control", held in Kloster Irsee, April 1-3 2001. As the preceding workshops held in Paris (2000) and in Ghent (1999), it was organized within the framework of Nonlinear Control Network funded by the European Union (http://www.supelec.fr/lss/NCN). The papers in this volume center around those control problems where phenomena and methods from dynamical systems theory play a dominant role. Despite the large variety of techniques and methods present in the c- tributions, a rough subdivision can be given into three areas: Bifurcation problems, stabilization and robustness, and global dynamics of control s- tems. A large part of the fascination in nonlinear control stems from the fact that is deeply rooted in engineering and mathematics alike. The contributions to this volume reflect this double nature of nonlinear control. We would like to take this opportunity to thank all the contributors and the referees for their careful work. Furthermore, it is our pleasure to thank Franchise Lamnabhi-Lagarrigue, the coordinator of our network, for her s- port in organizing the workshop and the proceedings and for the tremendous efforts she puts into this network bringing the cooperation between the d- ferent groups to a new level. In particular, the exchange and the active p- ticipation of young scientists, also reflected in the Pedagogical Schools within the Network, is an asset for the field of nonlinear control.