Low Power Wireless Sensor Networks


Download Low Power Wireless Sensor Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Low Power Wireless Sensor Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Ultra-Low Power Wireless Technologies for Sensor Networks


Ultra-Low Power Wireless Technologies for Sensor Networks

Author: Brian Otis

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-02-24


DOWNLOAD





transconductance e?ciency of all critical devices in order to reduce the n- essary bias current. However, reducing the current density also results in a severely decreased device f . An optimization of the current density is re- T quired to provide the correct balance between transconductance e?ciency and bandwidth. Plots such as Figure 2. 1 are useful tools for designers when choosing appropriate transistor bias points. Technology scaling allows greatly increased f realization for a given IC. Thus, weak inversion biasing for RF T design will become increasingly useful in future technology nodes. Throughout this work, the IC of critical transistors will be discussed. Most of the RF devices are biased in moderate to weak inversion to achieve enhanced transconductance e?ciency and reduced bias current. 2. 2 MEMS Background The relatively new ?eld of Radio Frequency Microelectro Mechanical Systems (RF MEMS) provides unique opportunities for RF transceiver designers. This section provides background on RF MEMS and provides insight into the - portunities presented by these new technologies. The ?eld of RF MEMS - cludes the design and utilization of RF ?lters, resonators, switches, and other passive mechanical structures constructed using bulk processed integrated c- cuit fabrication techniques. To date, these devices have been commercially used as discrete board-mounted components, primarily used to enhance the miniaturization of mobile phones. However, RF MEMS components have the potential to be batch fabricated using existing integrated circuit fabrication techniques.

Low-Power Wireless Sensor Networks


Low-Power Wireless Sensor Networks

Author: Jukka Suhonen

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-01-14


DOWNLOAD





Wireless sensor network (WSN) is an ad-hoc network technology comprising even thousands of autonomic and self-organizing nodes that combine environmental sensing, data processing, and wireless networking. The applications for sensor networks range from home and industrial environments to military uses. Unlike the traditional computer networks, a WSN is application-oriented and deployed for a specific task. WSNs are data centric, which means that messages are not send to individual nodes but to geographical locations or regions based on the data content. A WSN node is typically battery powered and characterized by extremely small size and low cost. As a result, the processing power, memory, and energy resources of an individual sensor node are limited. However, the feasibility of a WSN lies on the collaboration between the nodes. A reference WSN node comprises a Micro-Controller Unit (MCU) having few Million Instructions Per Second (MIPS) processing speed, tens of kilobytes program memory, few kilobytes data memory. In addition, the node contains a short-range radio, and a set of sensors. Supply power is typically obtained with small batteries. Assuming a target lifetime of one year using AA-size batteries, the available power budget is around 1 mW. This book covers the low-power WSNs services ranging from hardware platforms and communication protocols to network deployment, and sensor data collection and actuation. The implications of resource constraints and expected performance in terms of throughput, reliability and latency are explained. As a case study, this book presents experiments with low-energy TUTWSN technology to illustrate the possibilities and limitations of WSN applications.

Sensors and Low Power Signal Processing


Sensors and Low Power Signal Processing

Author: Syed Kamrul Islam

language: en

Publisher: Springer Science & Business Media

Release Date: 2009-12-02


DOWNLOAD





Low-power sensors and their applications in various fields ranging from military to civilian lives have made tremendous progress in the recent years. Low-power and extended battery life are the key focuses for long term, reliable and easy operation of these sensors. Sensors and Low Power Signal Processing provides a general overview of a sensor’s working principle and a discussion of the emerging sensor technologies including chemical, electro-chemical and MEMS based sensors. Also included is a discussion on design challenges associated with low-power analog circuits and the schemes to overcome them. Finally, a short discussion of some of the simple wireless telemetry schemes best suited for low-power sensor applications and sensor packaging issues is discussed. Applications and sensor prototypes included are environmental monitoring, health care monitoring and issues related to the development of sensor prototypes and associated electronics to achieve high signal-to-noise ratio will also be presented.