Longitudinal Data Analysis For The Behavioral Sciences Using R

Download Longitudinal Data Analysis For The Behavioral Sciences Using R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Longitudinal Data Analysis For The Behavioral Sciences Using R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Longitudinal Data Analysis for the Behavioral Sciences Using R

This book is a practical guide for the analysis of longitudinal behavioural data. Longitudinal data consist of repeated measures collected on the same subjects over time.
Longitudinal Data Analysis for the Behavioral Sciences Using R

This book is unique in its focus on showing students in the behavioral sciences how to analyze longitudinal data using R software. The book focuses on application, making it practical and accessible to students in psychology, education, and related fields, who have a basic foundation in statistics. It provides explicit instructions in R computer programming throughout the book, showing students exactly how a specific analysis is carried out and how output is interpreted. "This text excels in the explanation of models with the side-by-side use of R, so the audience can see the models in action. There is a gentle coverage of the mathematics driving the models, which does not seem intimidating to a non technical audience."—William Anderson, Cornell University
Longitudinal Data Analysis

Longitudinal data analysis for biomedical and behavioral sciences This innovative book sets forth and describes methods for the analysis of longitudinaldata, emphasizing applications to problems in the biomedical and behavioral sciences. Reflecting the growing importance and use of longitudinal data across many areas of research, the text is designed to help users of statistics better analyze and understand this type of data. Much of the material from the book grew out of a course taught by Dr. Hedeker on longitudinal data analysis. The material is, therefore, thoroughly classroom tested and includes a number of features designed to help readers better understand and apply the material. Statistical procedures featured within the text include: * Repeated measures analysis of variance * Multivariate analysis of variance for repeated measures * Random-effects regression models (RRM) * Covariance-pattern models * Generalized-estimating equations (GEE) models * Generalizations of RRM and GEE for categorical outcomes Practical in their approach, the authors emphasize the applications of the methods, using real-world examples for illustration. Some syntax examples are provided, although the authors do not generally focus on software in this book. Several datasets and computer syntax examples are posted on this title's companion Web site. The authors intend to keep the syntax examples current as new versions of the software programs emerge. This text is designed for both undergraduate and graduate courses in longitudinal data analysis. Instructors can take advantage of overheads and additional course materials available online for adopters. Applied statisticians in biomedicine and the social sciences can also use the book as a convenient reference.