Logic Based Methods For Optimization

Download Logic Based Methods For Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Logic Based Methods For Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Logic-Based Methods for Optimization

A pioneering look at the fundamental role of logic in optimizationand constraint satisfaction While recent efforts to combine optimization and constraintsatisfaction have received considerable attention, little has beensaid about using logic in optimization as the key to unifying thetwo fields. Logic-Based Methods for Optimization develops for thefirst time a comprehensive conceptual framework for integratingoptimization and constraint satisfaction, then goes a step furtherand shows how extending logical inference to optimization allowsfor more powerful as well as flexible modeling and solutiontechniques. Designed to be easily accessible to industryprofessionals and academics in both operations research andartificial intelligence, the book provides a wealth of examples aswell as elegant techniques and modeling frameworks ready forimplementation. Timely, original, and thought-provoking,Logic-Based Methods for Optimization: * Demonstrates the advantages of combining the techniques inproblem solving * Offers tutorials in constraint satisfaction/constraintprogramming and logical inference * Clearly explains such concepts as relaxation, cutting planes,nonserial dynamic programming, and Bender's decomposition * Reviews the necessary technologies for software developersseeking to combine the two techniques * Features extensive references to important computationalstudies * And much more
Logic-Based Methods for Optimization

"Logic-Based Methods for Optimization develops for the first time a comprehensive conceptual framework for integrating optimization and constraint satisfaction, then goes a step further and shows how extending logical inference to optimization allows for more powerful as well as flexible modeling and solution techniques. Designed to be easily accessible to industry professionals and academics in both operations research and artificial intelligence, the book provides a wealth of examples as well as elegant techniques and modeling frameworks ready for implementation."--BOOK JACKET.
Optimization Methods for Logical Inference

Merging logic and mathematics in deductive inference-an innovative, cutting-edge approach. Optimization methods for logical inference? Absolutely, say Vijay Chandru and John Hooker, two major contributors to this rapidly expanding field. And even though "solving logical inference problems with optimization methods may seem a bit like eating sauerkraut with chopsticks. . . it is the mathematical structure of a problem that determines whether an optimization model can help solve it, not the context in which the problem occurs." Presenting powerful, proven optimization techniques for logic inference problems, Chandru and Hooker show how optimization models can be used not only to solve problems in artificial intelligence and mathematical programming, but also have tremendous application in complex systems in general. They survey most of the recent research from the past decade in logic/optimization interfaces, incorporate some of their own results, and emphasize the types of logic most receptive to optimization methods-propositional logic, first order predicate logic, probabilistic and related logics, logics that combine evidence such as Dempster-Shafer theory, rule systems with confidence factors, and constraint logic programming systems. Requiring no background in logic and clearly explaining all topics from the ground up, Optimization Methods for Logical Inference is an invaluable guide for scientists and students in diverse fields, including operations research, computer science, artificial intelligence, decision support systems, and engineering.