Logic Based 0 1 Constraint Programming

Download Logic Based 0 1 Constraint Programming PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Logic Based 0 1 Constraint Programming book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Logic-Based 0–1 Constraint Programming

Author: Peter Barth
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
A logic view of 0-1 integer programming problems, providing new insights into the structure of problems that can lead the researcher to more effective solution techniques depending on the problem class. Operations research techniques are integrated into a logic programming environment. The first monographic treatment that begins to unify these two methodological approaches. Logic-based methods for modelling and solving combinatorial problems have recently started to play a significant role in both theory and practice. The application of logic to combinatorial problems has a dual aspect. On one hand, constraint logic programming allows one to declaratively model combinatorial problems over an appropriate constraint domain, the problems then being solved by a corresponding constraint solver. Besides being a high-level declarative interface to the constraint solver, the logic programming language allows one also to implement those subproblems that cannot be naturally expressed with constraints. On the other hand, logic-based methods can be used as a constraint solving technique within a constraint solver for combinatorial problems modelled as 0-1 integer programs.
Constraint Satisfaction in Logic Programming

This book tackles classic problems from operations research and circuit design using a logic programming language embedding consistency techniques, a paradigm emerging from artificial intelligence research. Van Hentenryck proposes a new approach to solving discrete combinatorial problems using these techniques.Logic programming serves as a convenient language for stating combinatorial problems, but its "generate and test" paradigm leads to inefficient programs. Van Hentenryck's approach preserves one of the most useful features of logic programming - the duality of its semantics - yet allows a short development time for the programs while preserving most of the efficiency of special purpose programs written in a procedural language.Embedding consistency techniques in logic programming allows for ease and flexibility of programming and short development time because constraint propagation and tree-search programming are abstracted away from the user. It also enables logic programs to be executed efficiently as consistency techniques permit an active use of constraints to remove combinations of values that cannot appear in a solution Van Hentenryck presents a comprehensive overview of this new approach from its theoretical foundations to its design and implementation, including applications to real life combinatorial problems.The ideas introduced in "Constraint Satisfaction in Logic Programming "have been used successfully to solve more than a dozen practical problems in operations research and circuit design, including disjunctive scheduling, warehouse location, cutting stock car sequencing, and microcode labeling problems.Pascal Van Hentenryck is a member of the research staff at the European Computer Industry Research Centre. "Constraint Satisfaction in Logic Programming" is based on research for the Centre's CHIP project. As an outgrowth of this project, a new language (CHIP) that will include consistency techniques has been developed for commercial use. The book is included in the Logic Programming series edited by Ehud Shapiro.
Handbook of Constraint Programming

Constraint programming is a powerful paradigm for solving combinatorial search problems that draws on a wide range of techniques from artificial intelligence, computer science, databases, programming languages, and operations research. Constraint programming is currently applied with success to many domains, such as scheduling, planning, vehicle routing, configuration, networks, and bioinformatics.The aim of this handbook is to capture the full breadth and depth of the constraint programming field and to be encyclopedic in its scope and coverage. While there are several excellent books on constraint programming, such books necessarily focus on the main notions and techniques and cannot cover also extensions, applications, and languages. The handbook gives a reasonably complete coverage of all these lines of work, based on constraint programming, so that a reader can have a rather precise idea of the whole field and its potential. Of course each line of work is dealt with in a survey-like style, where some details may be neglected in favor of coverage. However, the extensive bibliography of each chapter will help the interested readers to find suitable sources for the missing details. Each chapter of the handbook is intended to be a self-contained survey of a topic, and is written by one or more authors who are leading researchers in the area.The intended audience of the handbook is researchers, graduate students, higher-year undergraduates and practitioners who wish to learn about the state-of-the-art in constraint programming. No prior knowledge about the field is necessary to be able to read the chapters and gather useful knowledge. Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas.The handbook is organized in two parts. The first part covers the basic foundations of constraint programming, including the history, the notion of constraint propagation, basic search methods, global constraints, tractability and computational complexity, and important issues in modeling a problem as a constraint problem. The second part covers constraint languages and solver, several useful extensions to the basic framework (such as interval constraints, structured domains, and distributed CSPs), and successful application areas for constraint programming.- Covers the whole field of constraint programming- Survey-style chapters- Five chapters on applications