Logic And Representation

Download Logic And Representation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Logic And Representation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Logic and Representation

Author: Robert C. Moore
language: en
Publisher: Center for the Study of Language (CSLI)
Release Date: 1995
Logic and Representation brings together a collection of essays, written over a period of ten years, that apply formal logic and the notion of explicit representation of knowledge to a variety of problems in artificial intelligence, natural language semantics and the philosophy of mind and language. Particular attention is paid to modelling and reasoning about knowledge and belief, including reasoning about one's own beliefs, and the semantics of sentences about knowledge and belief. Robert C. Moore begins by exploring the role of logic in artificial intelligence, considering logic as an analytical tool, as a basis for reasoning systems, and as a programming language. He then looks at various logical analyses of propositional attitudes, including possible-world models, syntactic models, and models based on Russellian propositions. Next Moore examines autoepistemic logic, a logic for modelling reasoning about one's own beliefs. Rounding out the volume is a section on the semantics of natural language, including a survey of problems in semantic representation; a detailed study of the relations among events, situations, and adverbs; and a presentation of a unification-based approach to semantic interpretation. Robert C. Moore is principal scientist of the Artificial Intelligence Center of SRI International.
Logic-based Knowledge Representation

This book explores the building of expert systems using logic for knowledge representation and meta-level inference for control. It presents research done by members of the expert systems group of the Department of Artificial Intelligence in Edinburgh, often in collaboration with others, based on two hypotheses: that logic is a suitable knowledge representation language, and that an explicit representation of the control regime of the theorem prover has many advantages. The editors introduce these hypotheses and present the arguments in their favor They then describe Socrates' a tool for the construction of expert systems that is based on these assumptions. They devote the remaining chapters to the solution of problems that arise from the restrictions imposed by Socrates's representation language and from the system's inefficiency. The chapters dealing with the representation problem present a reified approach to temporal logic that makes it possible to use nonstandard logics without extending the system, and describe a general proof method for arbitrary modal logics. Those dealing with the efficiency problem discuss the technique of partial evaluation and its limitations, as well as another possible solution known as assertion-time inference. Peter Jackson is a Senior Scientist in the Department of Applied Mathematics and Computer Sciences at the McDonnell Douglas Research Laboratory in St. Louis. Han Reichgelt is a Lecturer in Department of Psychology at the University of Nottingham. Frank van Harmelen is a Research Fellow in the Mathematical Reasoning Group at the University of Edinburgh.
Knowledge Representation and Reasoning Under Uncertainty

Author: Michael Masuch
language: en
Publisher: Springer Science & Business Media
Release Date: 1994-06-28
This volume is based on the International Conference Logic at Work, held in Amsterdam, The Netherlands, in December 1992. The 14 papers in this volume are selected from 86 submissions and 8 invited contributions and are all devoted to knowledge representation and reasoning under uncertainty, which are core issues of formal artificial intelligence. Nowadays, logic is not any longer mainly associated to mathematical and philosophical problems. The term applied logic has a far wider meaning, as numerous applications of logical methods, particularly in computer science, artificial intelligence, or formal linguistics, testify. As demonstrated also in this volume, a variety of non-standard logics gained increased importance for knowledge representation and reasoning under uncertainty.