Location Estimation From The Ground Up

Download Location Estimation From The Ground Up PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Location Estimation From The Ground Up book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Location Estimation from the Ground Up

The location of an object can often be determined from indirect measurements using a process called estimation. This book explains the mathematical formulation of location-estimation problems and the statistical properties of these mathematical models. It also presents algorithms that are used to resolve these models to obtain location estimates, including the simplest linear models, nonlinear models (location estimation using satellite navigation systems and estimation of the signal arrival time from those satellites), dynamical systems (estimation of an entire path taken by a vehicle), and models with integer ambiguities (GPS location estimation that is centimeter-level accurate). Location Estimation from the Ground Up clearly presents analytic and algorithmic topics not covered in other books, including simple algorithms for Kalman filtering and smoothing, the solution of separable nonlinear optimization problems, estimation with integer ambiguities, and the implicit-function approach to estimating covariance matrices when the estimator is a minimizer or maximizer. It takes a unified approach to estimation while highlighting the differences between classes of estimation problems. The only book on estimation written for math and computer science students and graduates, it includes problems at the end of each chapter, many with solutions, to help readers deepen their understanding of the material and guide them through small programming projects that apply theory and algorithms to the solution of real-world location-estimation problems. The book’s core audience consists of engineers, including software engineers and algorithm developers, and graduate students who work on location-estimation projects and who need help translating the theory into algorithms, code, and deep understanding of the problem in front of them. Instructors in mathematics, computer science, and engineering may also find the book of interest as a primary or supplementary text for courses in location estimation and navigation.
Iterative Methods and Preconditioners for Systems of Linear Equations

Iterative methods use successive approximations to obtain more accurate solutions. This book gives an introduction to iterative methods and preconditioning for solving discretized elliptic partial differential equations and optimal control problems governed by the Laplace equation, for which the use of matrix-free procedures is crucial. All methods are explained and analyzed starting from the historical ideas of the inventors, which are often quoted from their seminal works. Iterative Methods and Preconditioners for Systems of Linear Equations grew out of a set of lecture notes that were improved and enriched over time, resulting in a clear focus for the teaching methodology, which derives complete convergence estimates for all methods, illustrates and provides MATLAB codes for all methods, and studies and tests all preconditioners first as stationary iterative solvers. This textbook is appropriate for undergraduate and graduate students who want an overview or deeper understanding of iterative methods. Its focus on both analysis and numerical experiments allows the material to be taught with very little preparation, since all the arguments are self-contained, and makes it appropriate for self-study as well. It can be used in courses on iterative methods, Krylov methods and preconditioners, and numerical optimal control. Scientists and engineers interested in new topics and applications will also find the text useful.
Solving Nonlinear Equations with Iterative Methods

This user-oriented guide describes state-of-the-art methods for nonlinear equations and shows, via algorithms in pseudocode and Julia with several examples, how to choose an appropriate iterative method for a given problem and write an efficient solver or apply one written by others. A sequel to the author’s Solving Nonlinear Equations with Newton’s Methods (SIAM, 2003), this book contains new material on pseudo-transient continuation, mixed-precision solvers, and Anderson acceleration. It is supported by a Julia package and a suite of Jupyter notebooks and includes examples of nonlinear problems from many disciplines. This book is will be useful to researchers who solve nonlinear equations, students in numerical analysis, and the Julia community.