Localized Flow Control In High Speed Flows Using Laser Energy Deposition

Download Localized Flow Control In High Speed Flows Using Laser Energy Deposition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Localized Flow Control In High Speed Flows Using Laser Energy Deposition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Localized Flow Control in High Speed Flows Using Laser Energy Deposition

The capability for localized flow control in high speed flows using laser energy deposition has been investigated in a collaborative computational and experimental program. Three proposed applications have been comprehensively studied. First, two models of laser energy deposition in air have been developed and validated by comparison with experiment. The first model is an engineering approach wherein the laser energy deposition is treated as an energy release in a perfect gas. The second model is a detailed physical approach which incorporates real gas chemistry with an eleven species model of air. Comparison with experimental measurements of static temperature, density and velocity (one-component) show good agreement with both models outside the plasma region. Second, a detailed 3-D simulation of laser energy deposition upstream of intersecting shocks at Mach 3.45 demonstrated the capability to force transition from Mach Reflection (MR) to Regular Reflection (RR) in the Dual Solution Domain. This result is particularly important for control of MR to RR transition in high speed inlets for scramjet-powered air vehicles. A companion experimental study showed a momentary reduction in the Mach stem height by 70%, but a Mach Reflection was recovered apparently due to freestream turbulence. Third, detailed 3-D simulations of laser energy deposition upstream of an isolated sphere and an Edney IV interaction at Mach 3.45 were performed. Results show the fundamental features observed in the accompanying experiments.
Aerodynamic Heating in Supersonic and Hypersonic Flows

Author: Mostafa Barzegar Gerdroodbary
language: en
Publisher: Elsevier
Release Date: 2022-10-11
Aerodynamic Heating in Supersonic and Hypersonic Flows: Advanced Techniques for Drag and Aero-heating Reduction explores the pros and cons of different heat reduction techniques on other characteristics of hypersonic vehicles. The book begins with an introduction of flow feature around the forebody of space vehicles and explains the main parameters on drag force and heat production in this region. The text then discusses the impact of severe heat production on the nose of hypervelocity vehicles, different reduction techniques for aerodynamic heating, and current practical applications for forebody shock control devices. Delivers valuable insight for aerospace engineers, postgraduate students, and researchers. - Presents computational results of different cooling systems for drag and heat reduction around nose cones - Explains mechanisms of drag reduction via mechanical, fluidic, and thermal systems - Provides comprehensive details about the aerodynamics of space vehicles and the different shock features in the forebody of super/hypersonic vehicles - Describes how numerical simulations are used for the development of the current design of forebody of super/hypersonic vehicles