Llm Design Patterns A Practical Guide To Building Robust And Efficient Ai Systems


Download Llm Design Patterns A Practical Guide To Building Robust And Efficient Ai Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Llm Design Patterns A Practical Guide To Building Robust And Efficient Ai Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

LLM Design Patterns


LLM Design Patterns

Author: Ken Huang

language: en

Publisher: Packt Publishing Ltd

Release Date: 2025-05-30


DOWNLOAD





Explore reusable design patterns, including data-centric approaches, model development, model fine-tuning, and RAG for LLM application development and advanced prompting techniques Key Features Learn comprehensive LLM development, including data prep, training pipelines, and optimization Explore advanced prompting techniques, such as chain-of-thought, tree-of-thought, RAG, and AI agents Implement evaluation metrics, interpretability, and bias detection for fair, reliable models Print or Kindle purchase includes a free PDF eBook Book DescriptionThis practical guide for AI professionals enables you to build on the power of design patterns to develop robust, scalable, and efficient large language models (LLMs). Written by a global AI expert and popular author driving standards and innovation in Generative AI, security, and strategy, this book covers the end-to-end lifecycle of LLM development and introduces reusable architectural and engineering solutions to common challenges in data handling, model training, evaluation, and deployment. You’ll learn to clean, augment, and annotate large-scale datasets, architect modular training pipelines, and optimize models using hyperparameter tuning, pruning, and quantization. The chapters help you explore regularization, checkpointing, fine-tuning, and advanced prompting methods, such as reason-and-act, as well as implement reflection, multi-step reasoning, and tool use for intelligent task completion. The book also highlights Retrieval-Augmented Generation (RAG), graph-based retrieval, interpretability, fairness, and RLHF, culminating in the creation of agentic LLM systems. By the end of this book, you’ll be equipped with the knowledge and tools to build next-generation LLMs that are adaptable, efficient, safe, and aligned with human values. What you will learn Implement efficient data prep techniques, including cleaning and augmentation Design scalable training pipelines with tuning, regularization, and checkpointing Optimize LLMs via pruning, quantization, and fine-tuning Evaluate models with metrics, cross-validation, and interpretability Understand fairness and detect bias in outputs Develop RLHF strategies to build secure, agentic AI systems Who this book is for This book is essential for AI engineers, architects, data scientists, and software engineers responsible for developing and deploying AI systems powered by large language models. A basic understanding of machine learning concepts and experience in Python programming is a must.

A Practical Guide to Generative AI Using Amazon Bedrock


A Practical Guide to Generative AI Using Amazon Bedrock

Author: Avik Bhattacharjee

language: en

Publisher: Springer Nature

Release Date: 2025-07-08


DOWNLOAD





This comprehensive guide gives you the knowledge and skills you need to excel in Generative AI. From understanding the fundamentals to mastering techniques, this book offers a step-by-step approach to leverage Amazon Bedrock to build, deploy, and secure Generative AI applications. The book presents structured chapters and practical examples to delve into key concepts such as prompt engineering, retrieval-augmented generation, and model evaluation. You will gain profound insights into the Amazon Bedrock platform. The book covers setup, life cycle management, and integration with Amazon SageMaker. The book emphasizes real-world applications, and provides use cases and best practices across industries on topics such as text summarization, image generation, and conversational AI bots. The book tackles vital topics including data privacy, security, responsible AI practices, and guidance on navigating governance and monitoring challenges while ensuring adherence to ethical standards and regulations. The book provides the tools and knowledge needed to excel in the rapidly evolving field of Generative AI. Whether you're a data scientist, AI engineer, or business professional, this book will empower you to harness the full potential of Generative AI and drive innovation in your organization. What You Will Learn Understand the fundamentals of Generative AI and Amazon Bedrock Build Responsible Generative AI applications leveraging Amazon Bedrock Know techniques and best practices See real-world applications Integrate and manage platforms Handle securty and governance issues Evaluate and optimze models Gain future-ready insights Understand the project life cycle when building Generative AI Applications Who This Book Is For Data scientistys, AI/ML engineers and architects, software developers plus AI enthusiasts and studenta and educators, and leaders who want to evangelize within organizatios

Design Patterns


Design Patterns

Author: Erich Gamma

language: en

Publisher: Pearson Deutschland GmbH

Release Date: 1995


DOWNLOAD





Software -- Software Engineering.