List Decoding Of Error Correcting Codes

Download List Decoding Of Error Correcting Codes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get List Decoding Of Error Correcting Codes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
List Decoding of Error-Correcting Codes

How can one exchange information e?ectively when the medium of com- nication introduces errors? This question has been investigated extensively starting with the seminal works of Shannon (1948) and Hamming (1950), and has led to the rich theory of “error-correcting codes”. This theory has traditionally gone hand in hand with the algorithmic theory of “decoding” that tackles the problem of recovering from the errors e?ciently. This thesis presents some spectacular new results in the area of decoding algorithms for error-correctingcodes. Speci?cally,itshowshowthenotionof“list-decoding” can be applied to recover from far more errors, for a wide variety of err- correcting codes, than achievable before. A brief bit of background: error-correcting codes are combinatorial str- tures that show how to represent (or “encode”) information so that it is - silient to a moderate number of errors. Speci?cally, an error-correcting code takes a short binary string, called the message, and shows how to transform it into a longer binary string, called the codeword, so that if a small number of bits of the codewordare ?ipped, the resulting string does not look like any other codeword. The maximum number of errorsthat the code is guaranteed to detect, denoted d, is a central parameter in its design. A basic property of such a code is that if the number of errors that occur is known to be smaller than d/2, the message is determined uniquely. This poses a computational problem,calledthedecodingproblem:computethemessagefromacorrupted codeword, when the number of errors is less than d/2.
List Decoding of Error-correcting Codes

(Cont.) We prove several combinatorial results that sharpen our understanding of the potential and limits of list decoding, and its relation to more classical parameters like the rate and minimum distance. The crux of the thesis is its algorithmic results, which were lacking in the early works on list decoding. Our algorithmic results include: * Efficient list decoding algorithms for classically studied codes such as Reed-Solomon codes and algebraic-geometric codes. In particular, building upon an earlier algorithm due to Sudan, we present the first polynomial time algorithm to decode Reed-Solomon codes beyond d/2 errors for every value of the rate. * A new soft list decoding algorithm for Reed-Solomon and algebraic-geometric codes, and novel decoding algorithms for concatenated codes based on it. * New code constructions using concatenation and/or expander graphs that have good (and sometimes near-optimal) rate and are efficiently list decodable from extremely large amounts of noise. * Expander-based constructions of linear time encodable and decodable codes that can correct up to the maximum possible fraction of errors, using unique (not list) decoding.
List Decoding of Error-Correcting Codes

Author: Venkatesan Guruswami
language: en
Publisher: Springer Science & Business Media
Release Date: 2004-11-29
This monograph is a thoroughly revised and extended version of the author's PhD thesis, which was selected as the winning thesis of the 2002 ACM Doctoral Dissertation Competition. Venkatesan Guruswami did his PhD work at the MIT with Madhu Sudan as thesis adviser. Starting with the seminal work of Shannon and Hamming, coding theory has generated a rich theory of error-correcting codes. This theory has traditionally gone hand in hand with the algorithmic theory of decoding that tackles the problem of recovering from the transmission errors efficiently. This book presents some spectacular new results in the area of decoding algorithms for error-correcting codes. Specificially, it shows how the notion of list-decoding can be applied to recover from far more errors, for a wide variety of error-correcting codes, than achievable before The style of the exposition is crisp and the enormous amount of information on combinatorial results, polynomial time list decoding algorithms, and applications is presented in well structured form.