Linknot Knot Theory By Computer


Download Linknot Knot Theory By Computer PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Linknot Knot Theory By Computer book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

LinKnot


LinKnot

Author: Slavik V. Jablan

language: en

Publisher: World Scientific

Release Date: 2007


DOWNLOAD





LinKnot - Knot Theory by Computer provides a unique view of selected topics in knot theory suitable for students, research mathematicians, and readers with backgrounds in other exact sciences, including chemistry, molecular biology and physics. The book covers basic notions in knot theory, as well as new methods for handling open problems such as unknotting number, braid family representatives, invertibility, amphicheirality, undetectability, non-algebraic tangles, polyhedral links, and (2,2)-moves. Conjectures discussed in the book are explained at length. The beauty, universality and diversity of knot theory is illuminated through various non-standard applications: mirror curves, fullerens, self-referential systems, and KL automata.

Linknot: Knot Theory By Computer


Linknot: Knot Theory By Computer

Author: Slavik Vlado Jablan

language: en

Publisher: World Scientific

Release Date: 2007-11-16


DOWNLOAD





LinKnot — Knot Theory by Computer provides a unique view of selected topics in knot theory suitable for students, research mathematicians, and readers with backgrounds in other exact sciences, including chemistry, molecular biology and physics.The book covers basic notions in knot theory, as well as new methods for handling open problems such as unknotting number, braid family representatives, invertibility, amphicheirality, undetectability, non-algebraic tangles, polyhedral links, and (2,2)-moves.Hands-on computations using Mathematica or the webMathematica package LinKnot and beautiful illustrations facilitate better learning and understanding. LinKnot is also a powerful research tool for experimental mathematics implementation of Caudron's ideas. The use of Conway notation enables experimenting with large families of knots and links.Conjectures discussed in the book are explained at length. The beauty, universality and diversity of knot theory is illuminated through various non-standard applications: mirror curves, fullerens, self-referential systems, and KL automata.

Combinatorial Knot Theory


Combinatorial Knot Theory

Author: Roger A Fenn

language: en

Publisher: World Scientific

Release Date: 2024-11-27


DOWNLOAD





A classic knot is an embedded simple loop in 3-dimensional space. It can be described as a 4-valent planar graph or network in the horizontal plane, with the vertices or crossings corresponding to double points of a projection. At this stage we have the shadow of the knot defined by the projection. We can reconstruct the knot by lifting the crossings into two points in space, one above the other. This information is preserved at the vertices by cutting the arc which appears to go under the over crossing arc. We can then act on this diagram of the knot using the famous Reidemeister moves to mimic the motion of the knot in space. The result is classic combinatorial knot theory. In recent years, many different types of knot theories have been considered where the information stored at the crossings determines how the Reidemeister moves are used, if at all.In this book, we look at all these new theories systematically in a way which any third-year undergraduate mathematics student would understand. This book can form the basis of an undergraduate course or as an entry point for a postgraduate studying topology.