Linear Regression And Correlation A Beginner S Guide

Download Linear Regression And Correlation A Beginner S Guide PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Linear Regression And Correlation A Beginner S Guide book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Beginner's Guide to Structural Equation Modeling

A Beginner’s Guide to Structural Equation Modeling, fifth edition, has been redesigned with consideration of a true beginner in structural equation modeling (SEM) in mind. The book covers introductory through intermediate topics in SEM in more detail than in any previous edition. All of the chapters that introduce models in SEM have been expanded to include easy-to-follow, step-by-step guidelines that readers can use when conducting their own SEM analyses. These chapters also include examples of tables to include in results sections that readers may use as templates when writing up the findings from their SEM analyses. The models that are illustrated in the text will allow SEM beginners to conduct, interpret, and write up analyses for observed variable path models to full structural models, up to testing higher order models as well as multiple group modeling techniques. Updated information about methodological research in relevant areas will help students and researchers be more informed readers of SEM research. The checklist of SEM considerations when conducting and reporting SEM analyses is a collective set of requirements that will help improve the rigor of SEM analyses. This book is intended for true beginners in SEM and is designed for introductory graduate courses in SEM taught in psychology, education, business, and the social and healthcare sciences. This book also appeals to researchers and faculty in various disciplines. Prerequisites include correlation and regression methods.
Beginner's Guide for Data Analysis using R Programming

R programming is an efficient tool for statistical analysis of data. Data science has become critical to each field and the popularity of R is skyrocketing. Organization as large and diverse as Google, Facebook, Microsoft, Bank of America, Ford Motor Company, Mozilla, Thomas Cook, The New York Times, The National Weather Service, Twitter, ANZ Bank, Uber, Airbnb etc . have turned to R for reporting, analyzing and visualization of data, this book is for students and professionals of Mathematics, Statistics, Physics, Chemistry, Biology, Social Science and Medicine, Business, Engineering, Software, Information Technology, Sales, Bio Informatics, Pharmacy and any one, where data needs to be analyzed and represented graphically.
The Beginner's Guide to Data Science

This book discusses the principles and practical applications of data science, addressing key topics including data wrangling, statistics, machine learning, data visualization, natural language processing and time series analysis. Detailed investigations of techniques used in the implementation of recommendation engines and the proper selection of metrics for distance-based analysis are also covered. Utilizing numerous comprehensive code examples, figures, and tables to help clarify and illuminate essential data science topics, the authors provide an extensive treatment and analysis of real-world questions, focusing especially on the task of determining and assessing answers to these questions as expeditiously and precisely as possible. This book addresses the challenges related to uncovering the actionable insights in “big data,” leveraging database and data collection tools such as web scraping and text identification. This book is organized as 11 chapters, structured as independent treatments of the following crucial data science topics: Data gathering and acquisition techniques including data creation Managing, transforming, and organizing data to ultimately package the information into an accessible format ready for analysis Fundamentals of descriptive statistics intended to summarize and aggregate data into a few concise but meaningful measurements Inferential statistics that allow us to infer (or generalize) trends about the larger population based only on the sample portion collected and recorded Metrics that measure some quantity such as distance, similarity, or error and which are especially useful when comparing one or more data observations Recommendation engines representing a set of algorithms designed to predict (or recommend) a particular product, service, or other item of interest a user or customer wishes to buy or utilize in some manner Machine learning implementations and associated algorithms, comprising core data science technologies with many practical applications, especially predictive analytics Natural Language Processing, which expedites the parsing and comprehension of written and spoken language in an effective and accurate manner Time series analysis, techniques to examine and generate forecasts about the progress and evolution of data over time Data science provides the methodology and tools to accurately interpret an increasing volume of incoming information in order to discern patterns, evaluate trends, and make the right decisions. The results of data science analysis provide real world answers to real world questions. Professionals working on data science and business intelligence projects as well as advanced-level students and researchers focused on data science, computer science, business and mathematics programs will benefit from this book.