Linear Models For Unbalanced Data

Download Linear Models For Unbalanced Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Linear Models For Unbalanced Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Linear Models for Unbalanced Data

Author: Shayle R. Searle
language: en
Publisher: John Wiley & Sons
Release Date: 2006-03-17
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "[This book] provides an excellent discussion of the methodology and interpretation of linear models analysis of unbalanced data (data having unequal numbers of observations in the subclasses), generally without matrices?the author does an excellent job of emphasizing the more practical nature of the book. Highly recommended for graduate and undergraduate libraries." â?"Choice "This is a very comprehensive text, aimed at both students studying linear-model theory and practicing statisticians who require an understanding of the model-fitting procedures incorporated in statistical packages?This book should be considered as a text for college courses as it provides a clearly presented and thorough treatment of linear models. It will also be useful to any practicing statistician who has to analyze unbalanced data, perhaps arising from surveys, and wishes to understand the output from model-fitting procedures and the discrepancies in analysis from one recognized package to another." â?"Biometrics This newly available and affordably priced paperback version of Linear Models for Unbalanced Data offers a presentation of the fundamentals of linear statistical models unique in its total devotion to unbalanced data and its emphasis on the up-to-date cell means model approach to linear models for unbalanced data. Topic coverage includes cell means models, 1-way classification, nested classifications, 2-way classification with some-cells-empty data, models with covariables, matrix algebra and quadratic forms, linear model theory, and much more.
Linear Models in Statistics

Author: Alvin C. Rencher
language: en
Publisher: John Wiley & Sons
Release Date: 2008-01-07
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
SAS for Linear Models

Features and capabilities of the REG, ANOVA, and GLM procedures are included in this introduction to analysing linear models with the SAS System. This guide shows how to apply the appropriate procedure to data analysis problems and understand PROC GLM output. Other helpful guidelines and discussions cover the following significant areas: Multivariate linear models; lack-of-fit analysis; covariance and heterogeneity of slopes; a classification with both crossed and nested effects; and analysis of variance for balanced data. This fourth edition includes updated examples, new software-related features, and new material, including a chapter on generalised linear models. Version 8 of the SAS System was used to run the SAS code examples in the book. * Provides clear explanations of how to use SAS to analyse linear models * Includes numerous SAS outputs * Includes new chapter on generalised linear models * Uses version 8 of the SAS system This book assists data analysts who use SAS/STAT software to analyse data using regression analysis and analysis of variance. It assumes familiarity with basic SAS concepts such as creating SAS data sets with the DATA step and manipulating SAS data sets with the procedures in base SAS software.