Linear Mixed Models In Practice


Download Linear Mixed Models In Practice PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Linear Mixed Models In Practice book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Linear Mixed Models


Linear Mixed Models

Author: Brady T. West

language: en

Publisher: CRC Press

Release Date: 2006-11-22


DOWNLOAD





Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-nav

Linear Mixed Models in Practice


Linear Mixed Models in Practice

Author: Geert Verbeke

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





The dissemination of the MIXED procedure in SAS has provided a whole class of statistical models for routine use. We believe that both the ideas be hind the techniques and their implementation in SAS are not at all straight forward and users from various applied backgrounds, including the phar maceutical industry, have experienced difficulties in using the procedure effectively. Courses and consultancy on PROC MIXED have been in great demand in recent years, illustrating the clear need for resource material to aid the user. This book is intended as a contribution to bridging this gap. We hope the book will be of value to a wide audience, including applied statisticians and many biomedical researchers, particularly in the pharma ceutical industry, medical and public health research organizations, con tract research organizations, and academic departments. This implies that our book is explanatory rather than research oriented and that it empha sizes practice rather than mathematical rigor. In this respect, clear guidance and advice on practical issues are the main focus of the text. Nevertheless, this does not imply that more advanced topics have been avoided. Sections containing material of a deeper level have been sign posted by means of an asterisk.

Linear and Generalized Linear Mixed Models and Their Applications


Linear and Generalized Linear Mixed Models and Their Applications

Author: Jiming Jiang

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-05-30


DOWNLOAD





Over the past decade there has been an explosion of developments in mixed e?ects models and their applications. This book concentrates on two major classes of mixed e?ects models, linear mixed models and generalized linear mixed models, with the intention of o?ering an up-to-date account of theory and methods in the analysis of these models as well as their applications in various ?elds. The ?rst two chapters are devoted to linear mixed models. We classify l- ear mixed models as Gaussian (linear) mixed models and non-Gaussian linear mixed models. There have been extensive studies in estimation in Gaussian mixed models as well as tests and con?dence intervals. On the other hand, the literature on non-Gaussian linear mixed models is much less extensive, partially because of the di?culties in inference about these models. However, non-Gaussian linear mixed models are important because, in practice, one is never certain that normality holds. This book o?ers a systematic approach to inference about non-Gaussian linear mixed models. In particular, it has included recently developed methods, such as partially observed information, iterative weighted least squares, and jackknife in the context of mixed models. Other new methods introduced in this book include goodness-of-?t tests, p- diction intervals, and mixed model selection. These are, of course, in addition to traditional topics such as maximum likelihood and restricted maximum likelihood in Gaussian mixed models.