Linear And Integer Programming

Download Linear And Integer Programming PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Linear And Integer Programming book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Theory of Linear and Integer Programming

Author: Alexander Schrijver
language: en
Publisher: John Wiley & Sons
Release Date: 1998-06-11
Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination, and relaxation methods; 13 Khachiyan's method for linear programming; 14 The ellipsoid method for polyhedra more generally; 15 Further polynomiality results in linear programming; 16 Introduction to integer linear programming; 17 Estimates in integer linear programming; 18 The complexity of integer linear programming; 19 Totally unimodular matrices: fundamental properties and examples; 20 Recognizing total unimodularity; 21 Further theory related to total unimodularity; 22 Integral polyhedra and total dual integrality; 23 Cutting planes; 24 Further methods in integer linear programming; Historical and further notes on integer linear programming; References; Notation index; Author index; Subject index
Linear and Integer Programming

Author: Abdul Bari
language: en
Publisher: Cambridge Scholars Publishing
Release Date: 2019-10-25
This book is primarily intended for undergraduate and postgraduate students of statistics, mathematics, operations research, and engineering. It provides the basic concepts and methods of linear and integer linear programming. The text begins with an introduction containing the mathematical background to the subject matter, and goes on to discuss advancements the field. Formulations of various problems in diverse fields in linear and integer programming formats are also presented here. The book’s presentation of the solution of various numerical problems makes the subject matter and the methods detailed in the text more lucid and easier to comprehend.
Linear and Integer Programming Made Easy

This textbook provides concise coverage of the basics of linear and integer programming which, with megatrends toward optimization, machine learning, big data, etc., are becoming fundamental toolkits for data and information science and technology. The authors’ approach is accessible to students from almost all fields of engineering, including operations research, statistics, machine learning, control system design, scheduling, formal verification and computer vision. The presentations enables the basis for numerous approaches to solving hard combinatorial optimization problems through randomization and approximation. Readers will learn to cast various problems that may arise in their research as optimization problems, understand the cases where the optimization problem will be linear, choose appropriate solution methods and interpret results appropriately.