Linear Algebraic Groups

Download Linear Algebraic Groups PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Linear Algebraic Groups book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Linear Algebraic Groups

Author: James E. Humphreys
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
James E. Humphreys is presently Professor of Mathematics at the University of Massachusetts at Amherst. Before this, he held the posts of Assistant Professor of Mathematics at the University of Oregon and Associate Professor of Mathematics at New York University. His main research interests include group theory and Lie algebras. He graduated from Oberlin College in 1961. He did graduate work in philosophy and mathematics at Cornell University and later received hi Ph.D. from Yale University if 1966. In 1972, Springer-Verlag published his first book, "Introduction to Lie Algebras and Representation Theory" (graduate Texts in Mathematics Vol. 9).
Linear Algebraic Groups

Author: Armand Borel
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
This book is a revised and enlarged edition of "Linear Algebraic Groups", published by W.A. Benjamin in 1969. The text of the first edition has been corrected and revised. Accordingly, this book presents foundational material on algebraic groups, Lie algebras, transformation spaces, and quotient spaces. After establishing these basic topics, the text then turns to solvable groups, general properties of linear algebraic groups and Chevally's structure theory of reductive groups over algebraically closed groundfields. The remainder of the book is devoted to rationality questions over non-algebraically closed fields. This second edition has been expanded to include material on central isogenies and the structure of the group of rational points of an isotropic reductive group. The main prerequisite is some familiarity with algebraic geometry. The main notions and results needed are summarized in a chapter with references and brief proofs.
Linear Algebraic Groups

Author: T.A. Springer
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-11-13
The first edition of this book presented the theory of linear algebraic groups over an algebraically closed field. The second edition, thoroughly revised and expanded, extends the theory over arbitrary fields, which are not necessarily algebraically closed. It thus represents a higher aim. As in the first edition, the book includes a self-contained treatment of the prerequisites from algebraic geometry and commutative algebra, as well as basic results on reductive groups. As a result, the first part of the book can well serve as a text for an introductory graduate course on linear algebraic groups.