Limit Theorems For Associated Random Fields And Related Systems

Download Limit Theorems For Associated Random Fields And Related Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Limit Theorems For Associated Random Fields And Related Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Limit Theorems for Associated Random Fields and Related Systems

Author: Aleksandr Vadimovich Bulinski?
language: en
Publisher: World Scientific
Release Date: 2007
This volume is devoted to the study of asymptotic properties of wide classes of stochastic systems arising in mathematical statistics, percolation theory, statistical physics and reliability theory. Attention is paid not only to positive and negative associations introduced in the pioneering papers by Harris, Lehmann, Esary, Proschan, Walkup, Fortuin, Kasteleyn and Ginibre, but also to new and more general dependence conditions. Naturally, this scope comprises families of independent real-valued random variables. A variety of important results and examples of Markov processes, random measures, stable distributions, Ising ferromagnets, interacting particle systems, stochastic differential equations, random graphs and other models are provided. For such random systems, it is worthwhile to establish principal limit theorems of the modern probability theory (central limit theorem for random fields, weak and strong invariance principles, functional law of the iterated logarithm etc.) and discuss their applications.There are 434 items in the bibliography.The book is self-contained, provides detailed proofs, for reader's convenience some auxiliary results are included in the Appendix (e.g. the classical Hoeffding lemma, basic electric current theory etc.).
Limit Theorems for Associated Random Fields and Related Systems

Author: Aleksandr Vadimovich Bulinskii
language: en
Publisher: World Scientific
Release Date: 2007
This volume is devoted to the study of asymptotic properties of wide classes of stochastic systems arising in mathematical statistics, percolation theory, statistical physics and reliability theory. Attention is paid not only to positive and negative associations introduced in the pioneering papers by Harris, Lehmann, Esary, Proschan, Walkup, Fortuin, Kasteleyn and Ginibre, but also to new and more general dependence conditions. Naturally, this scope comprises families of independent real-valued random variables. A variety of important results and examples of Markov processes, random measures, stable distributions, Ising ferromagnets, interacting particle systems, stochastic differential equations, random graphs and other models are provided. For such random systems, it is worthwhile to establish principal limit theorems of the modern probability theory (central limit theorem for random fields, weak and strong invariance principles, functional law of the iterated logarithm etc.) and discuss their applications. There are 434 items in the bibliography. The book is self-contained, provides detailed proofs, for reader's convenience some auxiliary results are included in the Appendix (e.g. the classical Hoeffding lemma, basic electric current theory etc.). Contents: Random Systems with Covariance Inequalities; Moment and Maximal Inequalities; Central Limit Theorem; Almost Sure Convergence; Invariance Principles; Law of the Iterated Logarithm; Statistical Applications; Integral Functionals. Readership: Researchers in modern probability and statistics, graduate students and academic staff of the universities.
Stochastic Geometry, Spatial Statistics and Random Fields

This volume provides a modern introduction to stochastic geometry, random fields and spatial statistics at a (post)graduate level. It is focused on asymptotic methods in geometric probability including weak and strong limit theorems for random spatial structures (point processes, sets, graphs, fields) with applications to statistics. Written as a contributed volume of lecture notes, it will be useful not only for students but also for lecturers and researchers interested in geometric probability and related subjects.