Lie Groups And Subsemigroups With Surjective Exponential Function


Download Lie Groups And Subsemigroups With Surjective Exponential Function PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lie Groups And Subsemigroups With Surjective Exponential Function book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Lie Groups and Subsemigroups with Surjective Exponential Function


Lie Groups and Subsemigroups with Surjective Exponential Function

Author: Karl Heinrich Hofmann

language: en

Publisher: American Mathematical Soc.

Release Date: 1997


DOWNLOAD





In the structure theory of real Lie groups, there is still information lacking about the exponential function. Most notably, there are no general necessary and sufficient conditions for the exponential function to be surjective. It is surprising that for subsemigroups of Lie groups, the question of the surjectivity of the exponential function can be answered. Under nature reductions setting aside the "group part" of the problem, subsemigroups of Lie groups with surjective exponential function are completely classified and explicitly constructed in this memoir. There are fewer than one would think and the proofs are harder than one would expect, requiring some innovative twists. The main protagonists on the scene are SL(2, R) and its universal covering group, almost abelian solvable Lie groups (ie. vector groups extended by homotheties), and compact Lie groups. This text will also be of interest to those working in algebra and algebraic geometry.

Lie Groups and Subsemigroups with Surjective Exponential Function


Lie Groups and Subsemigroups with Surjective Exponential Function

Author: Karl Heinrich Hofmann

language: en

Publisher: Oxford University Press, USA

Release Date: 2014-09-11


DOWNLOAD





In the structure theory of real Lie groups, there is still information lacking about the exponential function. Most notably, there are no general necessary and sufficient conditions for the exponential function to be surjective. It is surprising that for subsemigroups of Lie groups, the question of the surjectivity of the exponential function can be answered. Under nature reductions setting aside the group part of the problem, subsemigroups of Lie groups with surjective exponential function are completely classified and explicitly constructed in this memoir. There are fewer than one would think and the proofs are harder than one would expect, requiring some innovative twists.

Positivity in Lie Theory


Positivity in Lie Theory

Author: Joachim Hilgert

language: en

Publisher: Walter de Gruyter

Release Date: 2011-06-24


DOWNLOAD





The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)