Levy Processes Integral Equations Statistical Physics Connections And Interactions

Download Levy Processes Integral Equations Statistical Physics Connections And Interactions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Levy Processes Integral Equations Statistical Physics Connections And Interactions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Levy Processes, Integral Equations, Statistical Physics: Connections and Interactions

Author: Lev A. Sakhnovich
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-07-18
In a number of famous works, M. Kac showed that various methods of probability theory can be fruitfully applied to important problems of analysis. The interconnection between probability and analysis also plays a central role in the present book. However, our approach is mainly based on the application of analysis methods (the method of operator identities, integral equations theory, dual systems, integrable equations) to probability theory (Levy processes, M. Kac's problems, the principle of imperceptibility of the boundary, signal theory). The essential part of the book is dedicated to problems of statistical physics (classical and quantum cases). We consider the corresponding statistical problems (Gibbs-type formulas, non-extensive statistical mechanics, Boltzmann equation) from the game point of view (the game between energy and entropy). One chapter is dedicated to the construction of special examples instead of existence theorems (D. Larson's theorem, Ringrose's hypothesis, the Kadison-Singer and Gohberg-Krein questions). We also investigate the Bezoutiant operator. In this context, we do not make the assumption that the Bezoutiant operator is normally solvable, allowing us to investigate the special classes of the entire functions.
Integral Equations with Difference Kernels on Finite Intervals

This book focuses on solving integral equations with difference kernels on finite intervals. The corresponding problem on the semiaxis was previously solved by N. Wiener–E. Hopf and by M.G. Krein. The problem on finite intervals, though significantly more difficult, may be solved using our method of operator identities. This method is also actively employed in inverse spectral problems, operator factorization and nonlinear integral equations. Applications of the obtained results to optimal synthesis, light scattering, diffraction, and hydrodynamics problems are discussed in this book, which also describes how the theory of operators with difference kernels is applied to stable processes and used to solve the famous M. Kac problems on stable processes. In this second edition these results are extensively generalized and include the case of all Levy processes. We present the convolution expression for the well-known Ito formula of the generator operator, a convolution expression that has proven to be fruitful. Furthermore we have added a new chapter on triangular representation, which is closely connected with previous results and includes a new important class of operators with non-trivial invariant subspaces. Numerous formulations and proofs have now been improved, and the bibliography has been updated to reflect more recent additions to the body of literature.