Lectures On Summability

Download Lectures On Summability PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures On Summability book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Classical Summability Theory

This book presents results about certain summability methods, such as the Abel method, the Norlund method, the Weighted mean method, the Euler method and the Natarajan method, which have not appeared in many standard books. It proves a few results on the Cauchy multiplication of certain summable series and some product theorems. It also proves a number of Steinhaus type theorems. In addition, it introduces a new definition of convergence of a double sequence and double series and proves the Silverman-Toeplitz theorem for four-dimensional infinite matrices, as well as Schur's and Steinhaus theorems for four-dimensional infinite matrices. The Norlund method, the Weighted mean method and the Natarajan method for double sequences are also discussed in the context of the new definition. Divided into six chapters, the book supplements the material already discussed in G.H.Hardy's Divergent Series. It appeals to young researchers and experienced mathematicians who wish to explore new areas in Summability Theory..
Functional Analysis and Summability

There are excellent books on both functional analysis and summability. Most of them are very terse. In Functional Analysis and Summability, the author makes a sincere attempt for a gentle introduction of these topics to students. In the functional analysis component of the book, the Hahn–Banach theorem, Banach–Steinhaus theorem (or uniform boundedness principle), the open mapping theorem, the closed graph theorem, and the Riesz representation theorem are highlighted. In the summability component of the book, the Silverman–Toeplitz theorem, Schur’s theorem, the Steinhaus theorem, and the Steinhaus-type theorems are proved. The utility of functional analytic tools like the uniform boundedness principle to prove some results in summability theory is also pointed out. Features A gentle introduction of the topics to the students is attempted. Basic results of functional analysis and summability theory and their applications are highlighted. Many examples are provided in the text. Each chapter ends with useful exercises. This book will be useful to postgraduate students, pre-research level students, and research scholars in mathematics. Students of physics and engineering will also find this book useful since topics in the book also have applications in related areas.