Lectures On Set Theoretic Topology

Download Lectures On Set Theoretic Topology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures On Set Theoretic Topology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Lectures on Set Theoretic Topology

Author: Mary Ellen Rudin
language: en
Publisher: American Mathematical Soc.
Release Date: 1975-12-31
This survey presents some recent results connecting set theory with the problems of general topology, primarily giving the applications of classical set theory in general topology and not considering problems involving large numbers. The lectures are completely self-contained--this is a good reference book on modern questions of general topology and can serve as an introduction to the applications of set theory and infinite combinatorics.
Handbook of Set-Theoretic Topology

This Handbook is an introduction to set-theoretic topology for students in the field and for researchers in other areas for whom results in set-theoretic topology may be relevant. The aim of the editors has been to make it as self-contained as possible without repeating material which can easily be found in standard texts. The Handbook contains detailed proofs of core results, and references to the literature for peripheral results where space was insufficient. Included are many open problems of current interest.In general, the articles may be read in any order. In a few cases they occur in pairs, with the first one giving an elementary treatment of a subject and the second one more advanced results. These pairs are: Hodel and Juhász on cardinal functions; Roitman and Abraham-Todorčević on S- and L-spaces; Weiss and Baumgartner on versions of Martin's axiom; and Vaughan and Stephenson on compactness properties.
Topics in Set Theory

During the Fall Semester of 1987, Stevo Todorcevic gave a series of lectures at the University of Colorado. These notes of the course, taken by the author, give a novel and fast exposition of four chapters of Set Theory. The first two chapters are about the connection between large cardinals and Lebesque measure. The third is on forcing axioms such as Martin's axiom or the Proper Forcing Axiom. The fourth chapter looks at the method of minimal walks and p-functions and their applications. The book is addressed to researchers and graduate students interested in Set Theory, Set-Theoretic Topology and Measure Theory.