Lectures On Real Valued Functions

Download Lectures On Real Valued Functions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures On Real Valued Functions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Lectures on Real-valued Functions

Author: Alexander Kharazishvili
language: en
Publisher: Springer Nature
Release Date: 2025-08-23
This book offers several topics of mathematical analysis which are closely connected with significant properties of real-valued functions of various types (such as semi-continuous functions, monotone functions, convex functions, measurable functions, additive and linear functionals, etc.). Alongside with fairly traditional themes of real analysis and classical measure theory, more profound questions are thoroughly discussed in the book – appropriate extensions and restrictions of functions, oscillation functions and their characterization, discontinuous functions on resolvable topological spaces, pointwise limits of finite sums of periodic functions, some general results on invariant and quasi-invariant measures, the structure of non-measurable sets and functions, the Baire property of functions on topological spaces and its connections with measurability properties of functions, logical and set-theoretical aspects of the behavior of real-valued functions.
Lecture Notes on Complex Analysis

Author: Ivan Francis Wilde
language: en
Publisher: Imperial College Press
Release Date: 2006
This book is based on lectures presented over many years to second and third year mathematics students in the Mathematics Departments at Bedford College, London, and King's College, London, as part of the BSc. and MSci. program. Its aim is to provide a gentle yet rigorous first course on complex analysis.Metric space aspects of the complex plane are discussed in detail, making this text an excellent introduction to metric space theory. The complex exponential and trigonometric functions are defined from first principles and great care is taken to derive their familiar properties. In particular, the appearance of ã, in this context, is carefully explained.The central results of the subject, such as Cauchy's Theorem and its immediate corollaries, as well as the theory of singularities and the Residue Theorem are carefully treated while avoiding overly complicated generality. Throughout, the theory is illustrated by examples.A number of relevant results from real analysis are collected, complete with proofs, in an appendix.The approach in this book attempts to soften the impact for the student who may feel less than completely comfortable with the logical but often overly concise presentation of mathematical analysis elsewhere.
Lectures on Real Analysis

The theory of the Lebesgue integral is a main pillar in the foundation of modern analysis and its applications, including probability theory. This volume shows how and why the Lebesgue integral is such a universal and powerful concept. The lines of development of the theory are made clear by the order in which the main theorems are presented. Frequent references to earlier theorems made in the proofs emphasize the interdependence of the theorems and help to show how the various definitions and theorems fit together. Counter-examples are included to show why a hypothesis in a theorem cannot be dropped. The book is based upon a course on real analysis which the author has taught. It is particularly suitable for a one-year course at the graduate level. Precise statements and complete proofs are given for every theorem, with no obscurity left. For this reason the book is also suitable for self-study.