Lectures On Pseudo Differential Operators

Download Lectures On Pseudo Differential Operators PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures On Pseudo Differential Operators book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Lectures on Pseudo-Differential Operators

Author: Alexander Nagel
language: en
Publisher: Princeton University Press
Release Date: 2015-03-08
The theory of pseudo-differential operators (which originated as singular integral operators) was largely influenced by its application to function theory in one complex variable and regularity properties of solutions of elliptic partial differential equations. Given here is an exposition of some new classes of pseudo-differential operators relevant to several complex variables and certain non-elliptic problems. Originally published in 1979. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Pseudo-differential Operators

Author: Louis Nirenberg
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-06-06
S. Agmon: Asymptotic formulas with remainder estimates for eigenvalues of elliptic operators.- J. Bokobza-Haggiag: Une définition globale des opérateurs pseudo-différentiels sur une variété différentiable.- L. Boutet de Monvel: Pseudo-differential operators and analytic function.- A. Calderon: A priori estimates for singular integral operators.- B.F. Jones: Characterization of spaces of Bessel potentials related to the heat equation.- J.J. Kohn: Pseudo-differential operators and non-elliptic problems.- R.T. Seeley: Topics in pseudo-differential operators.- I.M. E. Shamir: Boundary value problems for elliptic convolution systems.- Singer: Elliptic operators on manifolds.
Pseudo Differential Operators

These notes are based on the lectures given on partial differential equations at the University of Michigan during the winter semester of 1972, with some extensions. The students to whom these lectures were addressed were assumed to have knowledge of elementary functional analysis, the Fourier transform, distribution theory, and Sobolev spaces, and such tools are used without comment. In this monography, we develop one tool, the calculus of pseudo differential operators, and apply it to several of the main problems of partial differential equations.