Lectures On Dynamics Of Stochastic Systems

Download Lectures On Dynamics Of Stochastic Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures On Dynamics Of Stochastic Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Lectures on Dynamics of Stochastic Systems

Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. Models naturally render to statistical description, where random processes and fields express the input parameters and solutions. The fundamental problem of stochastic dynamics is to identify the essential characteristics of the system (its state and evolution), and relate those to the input parameters of the system and initial data. This book is a revised and more comprehensive version of Dynamics of Stochastic Systems. Part I provides an introduction to the topic. Part II is devoted to the general theory of statistical analysis of dynamic systems with fluctuating parameters described by differential and integral equations. Part III deals with the analysis of specific physical problems associated with coherent phenomena. - A comprehensive update of Dynamics of Stochastic Systems - Develops mathematical tools of stochastic analysis and applies them to a wide range of physical models of particles, fluids and waves - Includes problems for the reader to solve
Stochastic Equations: Theory and Applications in Acoustics, Hydrodynamics, Magnetohydrodynamics, and Radiophysics, Volume 1

This monograph set presents a consistent and self-contained framework of stochastic dynamic systems with maximal possible completeness. Volume 1 presents the basic concepts, exact results, and asymptotic approximations of the theory of stochastic equations on the basis of the developed functional approach. This approach offers a possibility of both obtaining exact solutions to stochastic problems for a number of models of fluctuating parameters and constructing various asymptotic buildings. Ideas of statistical topography are used to discuss general issues of generating coherent structures from chaos with probability one, i.e., almost in every individual realization of random parameters. The general theory is illustrated with certain problems and applications of stochastic mathematical physics in various fields such as mechanics, hydrodynamics, magnetohydrodynamics, acoustics, optics, and radiophysics.