Lectures On Differential Topology


Download Lectures On Differential Topology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures On Differential Topology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Lectures on Differential Topology


Lectures on Differential Topology

Author: Riccardo Benedetti

language: en

Publisher: American Mathematical Soc.

Release Date: 2021-10-27


DOWNLOAD





This book gives a comprehensive introduction to the theory of smooth manifolds, maps, and fundamental associated structures with an emphasis on “bare hands” approaches, combining differential-topological cut-and-paste procedures and applications of transversality. In particular, the smooth cobordism cup-product is defined from scratch and used as the main tool in a variety of settings. After establishing the fundamentals, the book proceeds to a broad range of more advanced topics in differential topology, including degree theory, the Poincaré-Hopf index theorem, bordism-characteristic numbers, and the Pontryagin-Thom construction. Cobordism intersection forms are used to classify compact surfaces; their quadratic enhancements are developed and applied to studying the homotopy groups of spheres, the bordism group of immersed surfaces in a 3-manifold, and congruences mod 16 for the signature of intersection forms of 4-manifolds. Other topics include the high-dimensional h h-cobordism theorem stressing the role of the “Whitney trick”, a determination of the singleton bordism modules in low dimensions, and proofs of parallelizability of orientable 3-manifolds and the Lickorish-Wallace theorem. Nash manifolds and Nash's questions on the existence of real algebraic models are also discussed. This book will be useful as a textbook for beginning masters and doctoral students interested in differential topology, who have finished a standard undergraduate mathematics curriculum. It emphasizes an active learning approach, and exercises are included within the text as part of the flow of ideas. Experienced readers may use this book as a source of alternative, constructive approaches to results commonly presented in more advanced contexts with specialized techniques.

Introduction to Differential Topology


Introduction to Differential Topology

Author: Theodor Bröcker

language: en

Publisher: Cambridge University Press

Release Date: 1982-09-16


DOWNLOAD





This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.

Differential Topology


Differential Topology

Author: Amiya Mukherjee

language: en

Publisher: Birkhäuser

Release Date: 2015-06-30


DOWNLOAD





This book presents a systematic and comprehensive account of the theory of differentiable manifolds and provides the necessary background for the use of fundamental differential topology tools. The text includes, in particular, the earlier works of Stephen Smale, for which he was awarded the Fields Medal. Explicitly, the topics covered are Thom transversality, Morse theory, theory of handle presentation, h-cobordism theorem and the generalised Poincaré conjecture. The material is the outcome of lectures and seminars on various aspects of differentiable manifolds and differential topology given over the years at the Indian Statistical Institute in Calcutta, and at other universities throughout India. The book will appeal to graduate students and researchers interested in these topics. An elementary knowledge of linear algebra, general topology, multivariate calculus, analysis and algebraic topology is recommended.