Lectures On Constructive Approximation

Download Lectures On Constructive Approximation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures On Constructive Approximation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Lectures on Constructive Approximation

Author: Volker Michel
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-12
Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball focuses on spherical problems as they occur in the geosciences and medical imaging. It comprises the author’s lectures on classical approximation methods based on orthogonal polynomials and selected modern tools such as splines and wavelets. Methods for approximating functions on the real line are treated first, as they provide the foundations for the methods on the sphere and the ball and are useful for the analysis of time-dependent (spherical) problems. The author then examines the transfer of these spherical methods to problems on the ball, such as the modeling of the Earth’s or the brain’s interior. Specific topics covered include: * the advantages and disadvantages of Fourier, spline, and wavelet methods * theory and numerics of orthogonal polynomials on intervals, spheres, and balls * cubic splines and splines based on reproducing kernels * multiresolution analysis using wavelets and scaling functions This textbook is written for students in mathematics, physics, engineering, and the geosciences who have a basic background in analysis and linear algebra. The work may also be suitable as a self-study resource for researchers in the above-mentioned fields.
Constructive Approximation

In the last 30 years, Approximation Theory has undergone wonderful develop ment, with many new theories appearing in this short interval. This book has its origin in the wish to adequately describe this development, in particular, to rewrite the short 1966 book of G. G. Lorentz, "Approximation of Functions." Soon after 1980, R. A. DeVore and Lorentz joined forces for this purpose. The outcome has been their "Constructive Approximation" (1993), volume 303 of this series. References to this book are given as, for example rCA, p.201]. Later, M. v. Golitschek and Y. Makovoz joined Lorentz to produce the present book, as a continuation of the first. Completeness has not been our goal. In some of the theories, our exposition offers a selection of important, representative theorems, some other cases are treated more systematically. As in the first book, we treat only approximation of functions of one real variable. Thus, functions of several variables, complex approximation or interpolation are not treated, although complex variable methods appear often.
Coimbra Lecture Notes on Orthogonal Polynomials

Author: Amilcar Jose Pinto Lopes Branquinho
language: en
Publisher: Nova Publishers
Release Date: 2008
Orthogonal Polynomials and Special Functions (OPSF) have a very rich history, going back to 19th century when mathematicians and physicists tried to solve the most important deferential equations of mathematical physics. Hermite-Padé approximation was also introduced at that time, to prove the transcendence of the remarkable constant e (the basis of the natural logarithm). Since then OPSF has developed to a standard subject within mathematics, which is driven by applications. The applications are numerous, both within mathematics (e.g. statistics, combinatory, harmonic analysis, number theory) and other sciences, such as physics, biology, computer science, chemistry. The main reason for the fact that OPSF has been so successful over the centuries is its usefulness in other branches of mathematics and physics, as well as other sciences. There are many different aspects of OPSF. Some of the most important developments for OPSF are related to the theory of rational approximation of analytic functions, in particular the extension to simultaneous rational approximation to a system of functions. Important tools for rational approximation are Riemann-Hilbert problems, the theory of orthogonal polynomials, logarithmic potential theory, and operator theory for difference operators. This new book presents the latest research in the field.