Lectures On Analysis In Metric Spaces

Download Lectures On Analysis In Metric Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures On Analysis In Metric Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Lectures on Analysis on Metric Spaces

Author: Juha Heinonen
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Analysis in spaces with no a priori smooth structure has progressed to include concepts from the first order calculus. In particular, there have been important advances in understanding the infinitesimal versus global behavior of Lipschitz functions and quasiconformal mappings in rather general settings; abstract Sobolev space theories have been instrumental in this development. The purpose of this book is to communicate some of the recent work in the area while preparing the reader to study more substantial, related articles. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is relatively recent and appears for the first time in book format. There are plenty of exercises. The book is well suited for self-study, or as a text in a graduate course or seminar. The material is relevant to anyone who is interested in analysis and geometry in nonsmooth settings.
Topics on Analysis in Metric Spaces

This book presents the main mathematical prerequisites for analysis in metric spaces. It covers abstract measure theory, Hausdorff measures, Lipschitz functions, covering theorums, lower semicontinuity of the one-dimensional Hausdorff measure, Sobolev spaces of maps between metric spaces, and Gromov-Hausdorff theory, all developed ina general metric setting. The existence of geodesics (and more generally of minimal Steiner connections) is discussed on general metric spaces and as an application of the Gromov-Hausdorff theory, even in some cases when the ambient space is not locally compact. A brief and very general description of the theory of integration with respect to non-decreasing set functions is presented following the Di Giorgi method of using the 'cavalieri' formula as the definition of the integral. Based on lecture notes from Scuola Normale, this book presents the main mathematical prerequisites for analysis in metric spaces. Supplemented with exercises of varying difficulty it is ideal for a graduate-level short course for applied mathematicians and engineers.
Lectures on analysis in metric spaces

Author: Luigi Ambrosio
language: en
Publisher: Edizioni della Normale
Release Date: 2001-10-01
This book contains the notes of an international summer school on Analysis in Metric Spaces. The contributions are the following: T. Coulhon, Random walks and geometry on infinite graphs; G. David, Uniform rectifiability and quasiminimal sets; P. Koskela, Upper gradients and Poincaré inequalities; S. Semmes, Derivatives and difference quotients for Lipschitz or Sobolev functions on various spaces; R. L. Wheeden, Some weighted Poincaré estimates in spaces of homogenous type.