Lectures On Amenability


Download Lectures On Amenability PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures On Amenability book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Lectures on Amenability


Lectures on Amenability

Author: Volker Runde

language: en

Publisher: Springer

Release Date: 2004-10-12


DOWNLOAD





The notion of amenability has its origins in the beginnings of modern measure theory: Does a finitely additive set function exist which is invariant under a certain group action? Since the 1940s, amenability has become an important concept in abstract harmonic analysis (or rather, more generally, in the theory of semitopological semigroups). In 1972, B.E. Johnson showed that the amenability of a locally compact group G can be characterized in terms of the Hochschild cohomology of its group algebra L^1(G): this initiated the theory of amenable Banach algebras. Since then, amenability has penetrated other branches of mathematics, such as von Neumann algebras, operator spaces, and even differential geometry. Lectures on Amenability introduces second year graduate students to this fascinating area of modern mathematics and leads them to a level from where they can go on to read original papers on the subject. Numerous exercises are interspersed in the text.

Amenability of Discrete Groups by Examples


Amenability of Discrete Groups by Examples

Author: Kate Juschenko

language: en

Publisher: American Mathematical Society

Release Date: 2022-06-30


DOWNLOAD





The main topic of the book is amenable groups, i.e., groups on which there exist invariant finitely additive measures. It was discovered that the existence or non-existence of amenability is responsible for many interesting phenomena such as, e.g., the Banach-Tarski Paradox about breaking a sphere into two spheres of the same radius. Since then, amenability has been actively studied and a number of different approaches resulted in many examples of amenable and non-amenable groups. In the book, the author puts together main approaches to study amenability. A novel feature of the book is that the exposition of the material starts with examples which introduce a method rather than illustrating it. This allows the reader to quickly move on to meaningful material without learning and remembering a lot of additional definitions and preparatory results; those are presented after analyzing the main examples. The techniques that are used for proving amenability in this book are mainly a combination of analytic and probabilistic tools with geometric group theory.

Introduction to Banach Algebras, Operators, and Harmonic Analysis


Introduction to Banach Algebras, Operators, and Harmonic Analysis

Author: H. Garth Dales

language: en

Publisher: Cambridge University Press

Release Date: 2003-11-13


DOWNLOAD





This work has arisen from lecture courses given by the authors on important topics within functional analysis. The authors, who are all leading researchers, give introductions to their subjects at a level ideal for beginning graduate students, and others interested in the subject. The collection has been carefully edited so as to form a coherent and accessible introduction to current research topics. The first chapter by Professor Dales introduces the general theory of Banach algebras, which serves as a background to the remaining material. Dr Willis then studies a centrally important Banach algebra, the group algebra of a locally compact group. The remaining chapters are devoted to Banach algebras of operators on Banach spaces: Professor Eschmeier gives all the background for the exciting topic of invariant subspaces of operators, and discusses some key open problems; Dr Laursen and Professor Aiena discuss local spectral theory for operators, leading into Fredholm theory.