Lectures In Knot Theory

Download Lectures In Knot Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures In Knot Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Lectures in Knot Theory

Author: Józef H. Przytycki
language: en
Publisher: Springer Nature
Release Date: 2024-03-15
This text is based on lectures delivered by the first author on various, often nonstandard, parts of knot theory and related subjects. By exploring contemporary topics in knot theory including those that have become mainstream, such as skein modules, Khovanov homology and Gram determinants motivated by knots, this book offers an innovative extension to the existing literature. Each lecture begins with a historical overview of a topic and gives motivation for the development of that subject. Understanding of most of the material in the book requires only a basic knowledge of topology and abstract algebra. The intended audience is beginning and advanced graduate students, advanced undergraduate students, and researchers interested in knot theory and its relations with other disciplines within mathematics, physics, biology, and chemistry. Inclusion of many exercises, open problems, and conjectures enables the reader to enhance their understanding of the subject. The use of this text for the classroom is versatile and depends on the course level and choices made by the instructor. Suggestions for variations in course coverage are included in the Preface. The lecture style and array of topical coverage are hoped to inspire independent research and applications of the methods described in the book to other disciplines of science. An introduction to the topology of 3-dimensional manifolds is included in Appendices A and B. Lastly, Appendix C includes a Table of Knots.
Introductory Lectures on Knot Theory

More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.
Introductory Lectures On Knot Theory: Selected Lectures Presented At The Advanced School And Conference On Knot Theory And Its Applications To Physics And Biology

This volume consists primarily of survey papers that evolved from the lectures given in the school portion of the meeting and selected papers from the conference.Knot theory is a very special topological subject: the classification of embeddings of a circle or collection of circles into three-dimensional space. This is a classical topological problem and a special case of the general placement problem: Understanding the embeddings of a space X in another space Y. There have been exciting new developments in the area of knot theory and 3-manifold topology in the last 25 years. From the Jones, Homflypt and Kauffman polynomials, quantum invariants of 3-manifolds, through, Vassiliev invariants, topological quantum field theories, to relations with gauge theory type invariants in 4-dimensional topology.More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.It is a remarkable fact that knot theory, while very special in its problematic form, involves ideas and techniques that involve and inform much of mathematics and theoretical physics. The subject has significant applications and relations with biology, physics, combinatorics, algebra and the theory of computation. The summer school on which this book is based contained excellent lectures on the many aspects of applications of knot theory. This book gives an in-depth survey of the state of the art of present day knot theory and its applications.