Lecture Notes On Symmetries And Curvature Structure In General Relativity

Download Lecture Notes On Symmetries And Curvature Structure In General Relativity PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lecture Notes On Symmetries And Curvature Structure In General Relativity book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Symmetries And Curvature Structure In General Relativity

This is a text on classical general relativity from a geometrical viewpoint. Introductory chapters are provided on algebra, topology and manifold theory, together with a chapter on the basic ideas of space-time manifolds and Einstein's theory. There is a detailed account of algebraic structures and tensor classification in general relativity and also of the relationships between the metric, connection and curvature structures on space-times. The latter includes chapters on holonomy and sectional curvature. An extensive study is presented of symmetries in general relativity, including isometries, homotheties, conformal symmetries and affine, projective and curvature collineations. Several general properties of such symmetries are studied and a preparatory section on transformation groups and on the properties of Lie algebras of vector fields on manifolds is provided.
Mathematical Introduction To General Relativity, A (Second Edition)

The book aims to give a mathematical presentation of the theory of general relativity (that is, spacetime-geometry-based gravitation theory) to advanced undergraduate mathematics students. Mathematicians will find spacetime physics presented in the definition-theorem-proof format familiar to them. The given precise mathematical definitions of physical notions help avoiding pitfalls, especially in the context of spacetime physics describing phenomena that are counter-intuitive to everyday experiences.In the first part, the differential geometry of smooth manifolds, which is needed to present the spacetime-based gravitation theory, is developed from scratch. Here, many of the illustrating examples are the Lorentzian manifolds which later serve as spacetime models. This has the twofold purpose of making the physics forthcoming in the second part relatable, and the mathematics learnt in the first part less dry. The book uses the modern coordinate-free language of semi-Riemannian geometry. Nevertheless, to familiarise the reader with the useful tool of coordinates for computations, and to bridge the gap with the physics literature, the link to coordinates is made through exercises, and via frequent remarks on how the two languages are related.In the second part, the focus is on physics, covering essential material of the 20th century spacetime-based view of gravity: energy-momentum tensor field of matter, field equation, spacetime examples, Newtonian approximation, geodesics, tests of the theory, black holes, and cosmological models of the universe. Prior knowledge of differential geometry or physics is not assumed. The book is intended for self-study, and the solutions to all the 283 exercises are included.The second edition corrects errors from the first edition, and includes 60 new exercises, 10 new remarks, 29 new figures, some of which cover auxiliary topics that were omitted in the first edition.