Lecture Notes On Regularity Theory For The Navier Stokes Equations

Download Lecture Notes On Regularity Theory For The Navier Stokes Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lecture Notes On Regularity Theory For The Navier Stokes Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Lecture Notes On Regularity Theory For The Navier-stokes Equations

The lecture notes in this book are based on the TCC (Taught Course Centre for graduates) course given by the author in Trinity Terms of 2009-2011 at the Mathematical Institute of Oxford University. It contains more or less an elementary introduction to the mathematical theory of the Navier-Stokes equations as well as the modern regularity theory for them. The latter is developed by means of the classical PDE's theory in the style that is quite typical for St Petersburg's mathematical school of the Navier-Stokes equations.The global unique solvability (well-posedness) of initial boundary value problems for the Navier-Stokes equations is in fact one of the seven Millennium problems stated by the Clay Mathematical Institute in 2000. It has not been solved yet. However, a deep connection between regularity and well-posedness is known and can be used to attack the above challenging problem. This type of approach is not very well presented in the modern books on the mathematical theory of the Navier-Stokes equations. Together with introduction chapters, the lecture notes will be a self-contained account on the topic from the very basic stuff to the state-of-art in the field.
Regularity Theory for Generalized Navier–Stokes Equations

Author: Cholmin Sin
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2025-03-17
This book delves into the recent findings and research methods in the existence and regularity theory for Non-Newtonian Fluids with Variable Power-Law. The aim of this book is not only to introduce recent results and research methods in the existence and regularity theory, such as higher integrability, higher differentiability, and Holder continuity for flows of non-Newtonian fluids with variable power-laws, but also to summarize much of the existing literature concerning these topics. While this book mainly focuses on steady-state flows of non-Newtonian fluids, the methods and ideas presented in this book can be applied to unsteady flows (as discussed in Chapter 7) and other related problems such as complex non-Newtonian fluids, plasticity, elasticity, p(x)-Laplacian type systems, and so on. The book is intended for researchers and graduate students in the field of mathematical fluid mechanics and partial differential equations with variable exponents. It is expected to contribute to the advancement of mathematics and its applications.
Lectures on Navier-Stokes Equations

Author: Tai-Peng Tsai
language: en
Publisher: American Mathematical Soc.
Release Date: 2018-08-09
This book is a graduate text on the incompressible Navier-Stokes system, which is of fundamental importance in mathematical fluid mechanics as well as in engineering applications. The goal is to give a rapid exposition on the existence, uniqueness, and regularity of its solutions, with a focus on the regularity problem. To fit into a one-year course for students who have already mastered the basics of PDE theory, many auxiliary results have been described with references but without proofs, and several topics were omitted. Most chapters end with a selection of problems for the reader. After an introduction and a careful study of weak, strong, and mild solutions, the reader is introduced to partial regularity. The coverage of boundary value problems, self-similar solutions, the uniform L3 class including the celebrated Escauriaza-Seregin-Šverák Theorem, and axisymmetric flows in later chapters are unique features of this book that are less explored in other texts. The book can serve as a textbook for a course, as a self-study source for people who already know some PDE theory and wish to learn more about Navier-Stokes equations, or as a reference for some of the important recent developments in the area.