Learning Spark Lightning Fast Big Data Analysis 2nd Edition Pdf


Download Learning Spark Lightning Fast Big Data Analysis 2nd Edition Pdf PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Learning Spark Lightning Fast Big Data Analysis 2nd Edition Pdf book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Learning Spark


Learning Spark

Author: Jules S. Damji

language: en

Publisher: O'Reilly Media

Release Date: 2020-07-16


DOWNLOAD





Data is bigger, arrives faster, and comes in a variety of formatsâ??and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, youâ??ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow

Learning Spark


Learning Spark

Author: Holden Karau

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2015-01-28


DOWNLOAD





This book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. You'll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning.--

Advanced Analytics with Spark


Advanced Analytics with Spark

Author: Sandy Ryza

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2015-04-02


DOWNLOAD





In this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. You’ll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques—classification, collaborative filtering, and anomaly detection among others—to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you’ll find these patterns useful for working on your own data applications. Patterns include: Recommending music and the Audioscrobbler data set Predicting forest cover with decision trees Anomaly detection in network traffic with K-means clustering Understanding Wikipedia with Latent Semantic Analysis Analyzing co-occurrence networks with GraphX Geospatial and temporal data analysis on the New York City Taxi Trips data Estimating financial risk through Monte Carlo simulation Analyzing genomics data and the BDG project Analyzing neuroimaging data with PySpark and Thunder