Learning Opencv Computer Vision With The Opencv Library


Download Learning Opencv Computer Vision With The Opencv Library PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Learning Opencv Computer Vision With The Opencv Library book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Learning OpenCV


Learning OpenCV

Author: Gary Bradski

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2008-09-24


DOWNLOAD





"This library is useful for practitioners, and is an excellent tool for those entering the field: it is a set of computer vision algorithms that work as advertised."-William T. Freeman, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology Learning OpenCV puts you in the middle of the rapidly expanding field of computer vision. Written by the creators of the free open source OpenCV library, this book introduces you to computer vision and demonstrates how you can quickly build applications that enable computers to "see" and make decisions based on that data. Computer vision is everywhere-in security systems, manufacturing inspection systems, medical image analysis, Unmanned Aerial Vehicles, and more. It stitches Google maps and Google Earth together, checks the pixels on LCD screens, and makes sure the stitches in your shirt are sewn properly. OpenCV provides an easy-to-use computer vision framework and a comprehensive library with more than 500 functions that can run vision code in real time. Learning OpenCV will teach any developer or hobbyist to use the framework quickly with the help of hands-on exercises in each chapter. This book includes: A thorough introduction to OpenCV Getting input from cameras Transforming images Segmenting images and shape matching Pattern recognition, including face detection Tracking and motion in 2 and 3 dimensions 3D reconstruction from stereo vision Machine learning algorithms Getting machines to see is a challenging but entertaining goal. Whether you want to build simple or sophisticated vision applications, Learning OpenCV is the book you need to get started.

Learning OpenCV 3 Computer Vision with Python


Learning OpenCV 3 Computer Vision with Python

Author: Joe Minichino

language: en

Publisher:

Release Date: 2015


DOWNLOAD





Unleash the power of computer vision with Python using OpenCVAbout This Book- Create impressive applications with OpenCV and Python- Familiarize yourself with advanced machine learning concepts- Harness the power of computer vision with this easy-to-follow guideWho This Book Is ForIntended for novices to the world of OpenCV and computer vision, as well as OpenCV veterans that want to learn about what's new in OpenCV 3, this book is useful as a reference for experts and a training manual for beginners, or for anybody who wants to familiarize themselves with the concepts of object classification and detection in simple and understandable terms. Basic knowledge about Python and programming concepts is required, although the book has an easy learning curve both from a theoretical and coding point of view.What You Will Learn- Install and familiarize yourself with OpenCV 3's Python API- Grasp the basics of image processing and video analysis- Identify and recognize objects in images and videos- Detect and recognize faces using OpenCV- Train and use your own object classifiers- Learn about machine learning concepts in a computer vision context- Work with artificial neural networks using OpenCV- Develop your own computer vision real-life applicationIn DetailOpenCV 3 is a state-of-the-art computer vision library that allows a great variety of image and video processing operations. Some of the more spectacular and futuristic features such as face recognition or object tracking are easily achievable with OpenCV 3. Learning the basic concepts behind computer vision algorithms, models, and OpenCV's API will enable the development of all sorts of real-world applications, including security and surveillance.Starting with basic image processing operations, the book will take you through to advanced computer vision concepts. Computer vision is a rapidly evolving science whose applications in the real world are exploding, so this book will appeal to computer vision novices as well as experts of the subject wanting to learn the brand new OpenCV 3.0.0. You will build a theoretical foundation of image processing and video analysis, and progress to the concepts of classification through machine learning, acquiring the technical know-how that will allow you to create and use object detectors and classifiers, and even track objects in movies or video camera feeds. Finally, the journey will end in the world of artificial neural networks, along with the development of a hand-written digits recognition application.Style and approachThis book is a comprehensive guide to the brand new OpenCV 3 with Python to develop real-life computer vision applications.

Computer Vision Projects with OpenCV and Python 3


Computer Vision Projects with OpenCV and Python 3

Author: Matthew Rever

language: en

Publisher: Packt Publishing Ltd

Release Date: 2018-12-28


DOWNLOAD





Gain a working knowledge of advanced machine learning and explore Python’s powerful tools for extracting data from images and videos Key FeaturesImplement image classification and object detection using machine learning and deep learningPerform image classification, object detection, image segmentation, and other Computer Vision tasksCrisp content with a practical approach to solving real-world problems in Computer VisionBook Description Python is the ideal programming language for rapidly prototyping and developing production-grade codes for image processing and Computer Vision with its robust syntax and wealth of powerful libraries. This book will help you design and develop production-grade Computer Vision projects tackling real-world problems. With the help of this book, you will learn how to set up Anaconda and Python for the major OSes with cutting-edge third-party libraries for Computer Vision. You'll learn state-of-the-art techniques for classifying images, finding and identifying human postures, and detecting faces within videos. You will use powerful machine learning tools such as OpenCV, Dlib, and TensorFlow to build exciting projects such as classifying handwritten digits, detecting facial features,and much more. The book also covers some advanced projects, such as reading text from license plates from real-world images using Google’s Tesseract software, and tracking human body poses using DeeperCut within TensorFlow. By the end of this book, you will have the expertise required to build your own Computer Vision projects using Python and its associated libraries. What you will learnInstall and run major Computer Vision packages within PythonApply powerful support vector machines for simple digit classificationUnderstand deep learning with TensorFlowBuild a deep learning classifier for general imagesUse LSTMs for automated image captioningRead text from real-world imagesExtract human pose data from imagesWho this book is for Python programmers and machine learning developers who wish to build exciting Computer Vision projects using the power of machine learning and OpenCV will find this book useful. The only prerequisite for this book is that you should have a sound knowledge of Python programming.