Learn Emotion Analysis With R


Download Learn Emotion Analysis With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Learn Emotion Analysis With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Learn Emotion Analysis with R


Learn Emotion Analysis with R

Author: Partha Majumdar

language: en

Publisher: BPB Publications

Release Date: 2021-06-02


DOWNLOAD





Learn to assess textual data and extract sentiments using various text analysis R packages KEY FEATURES ● In-depth coverage on core principles, challenges, and application of Emotion Analysis. ● Includes real-world examples to simplify practical uses of R, Shiny, and various popular NLP techniques. ● Covers different strategies used in Sentiment and Emotion Analysis. DESCRIPTION This book covers how to conduct Emotion Analysis based on Lexicons. Through a detailed code walkthrough, the book will explain how to develop systems for Sentiment and Emotion Analysis from popular sources of data, including WhatsApp, Twitter, etc. The book starts with a discussion on R programming and Shiny programming as these will lay the foundation for the system to be developed for Emotion Analysis. Then, the book discusses essentials of Sentiment Analysis and Emotion Analysis. The book then proceeds to build Shiny applications for Emotion Analysis. The book rounds off with creating a tool for Emotion Analysis from the data obtained from Twitter and WhatsApp. Emotion Analysis can be also performed using Machine Learning. However, this requires labeled data. This is a logical next step after reading this book. WHAT YOU WILL LEARN ● Learn the essentials of Sentiment Analysis. ● Learn the essentials of Emotion Analysis. ● Conducting Emotion Analysis using Lexicons. ● Learn to develop Shiny applications. ● Understanding the essentials of R programming for developing systems for Emotion Analysis. WHO THIS BOOK IS FOR This book aspires to teach NLP users, ML engineers, and AI engineers who want to develop a strong understanding of Emotion and Sentiment Analysis. No prior knowledge of R programming is needed. All you need is just an open mind to learn and explore this concept. TABLE OF CONTENTS Section 1 Introduction to R Programming 1 Getting Started with R 2 Simple Operations using R 3 Developing Simple Applications in R Section 2 Introduction to Shiny Programming 4 Structure of Shiny Applications 5 Shiny Application 1 6 Shiny Application 2 Section 3 Emotion Analysis 7 Sentiment Analysis 8 Emotion Analysis 9 ZEUSg Section 4 Twitter Data Analysis 10 Introduction to Twitter Data Analysis 11 Emotion Analysis on Twitter Data 12 Chidiya BONUS CHAPTER WhatsApp Chat Analysis

Learning Social Media Analytics with R


Learning Social Media Analytics with R

Author: Raghav Bali

language: en

Publisher: Packt Publishing Ltd

Release Date: 2017-05-26


DOWNLOAD





Tap into the realm of social media and unleash the power of analytics for data-driven insights using R About This Book A practical guide written to help leverage the power of the R eco-system to extract, process, analyze, visualize and model social media data Learn about data access, retrieval, cleaning, and curation methods for data originating from various social media platforms. Visualize and analyze data from social media platforms to understand and model complex relationships using various concepts and techniques such as Sentiment Analysis, Topic Modeling, Text Summarization, Recommendation Systems, Social Network Analysis, Classification, and Clustering. Who This Book Is For It is targeted at IT professionals, Data Scientists, Analysts, Developers, Machine Learning Enthusiasts, social media marketers and anyone with a keen interest in data, analytics, and generating insights from social data. Some background experience in R would be helpful, but not necessary, since this book is written keeping in mind, that readers can have varying levels of expertise. What You Will Learn Learn how to tap into data from diverse social media platforms using the R ecosystem Use social media data to formulate and solve real-world problems Analyze user social networks and communities using concepts from graph theory and network analysis Learn to detect opinion and sentiment, extract themes, topics, and trends from unstructured noisy text data from diverse social media channels Understand the art of representing actionable insights with effective visualizations Analyze data from major social media channels such as Twitter, Facebook, Flickr, Foursquare, Github, StackExchange, and so on Learn to leverage popular R packages such as ggplot2, topicmodels, caret, e1071, tm, wordcloud, twittR, Rfacebook, dplyr, reshape2, and many more In Detail The Internet has truly become humongous, especially with the rise of various forms of social media in the last decade, which give users a platform to express themselves and also communicate and collaborate with each other. This book will help the reader to understand the current social media landscape and to learn how analytics can be leveraged to derive insights from it. This data can be analyzed to gain valuable insights into the behavior and engagement of users, organizations, businesses, and brands. It will help readers frame business problems and solve them using social data. The book will also cover several practical real-world use cases on social media using R and its advanced packages to utilize data science methodologies such as sentiment analysis, topic modeling, text summarization, recommendation systems, social network analysis, classification, and clustering. This will enable readers to learn different hands-on approaches to obtain data from diverse social media sources such as Twitter and Facebook. It will also show readers how to establish detailed workflows to process, visualize, and analyze data to transform social data into actionable insights. Style and approach This book follows a step-by-step approach with detailed strategies for understanding, extracting, analyzing, visualizing, and modeling data from several major social network platforms such as Facebook, Twitter, Foursquare, Flickr, Github, and StackExchange. The chapters cover several real-world use cases and leverage data science, machine learning, network analysis, and graph theory concepts along with the R ecosystem, including popular packages such as ggplot2, caret,dplyr, topicmodels, tm, and so on.

Deep Learning-Based Approaches for Sentiment Analysis


Deep Learning-Based Approaches for Sentiment Analysis

Author: Basant Agarwal

language: en

Publisher: Springer Nature

Release Date: 2020-01-24


DOWNLOAD





This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.