Large Scale Machine Learning With Python

Download Large Scale Machine Learning With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Large Scale Machine Learning With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Large Scale Machine Learning with Python

Author: Bastiaan Sjardin
language: en
Publisher: Packt Publishing Ltd
Release Date: 2016-08-03
Learn to build powerful machine learning models quickly and deploy large-scale predictive applications About This Book Design, engineer and deploy scalable machine learning solutions with the power of Python Take command of Hadoop and Spark with Python for effective machine learning on a map reduce framework Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This book is for anyone who intends to work with large and complex data sets. Familiarity with basic Python and machine learning concepts is recommended. Working knowledge in statistics and computational mathematics would also be helpful. What You Will Learn Apply the most scalable machine learning algorithms Work with modern state-of-the-art large-scale machine learning techniques Increase predictive accuracy with deep learning and scalable data-handling techniques Improve your work by combining the MapReduce framework with Spark Build powerful ensembles at scale Use data streams to train linear and non-linear predictive models from extremely large datasets using a single machine In Detail Large Python machine learning projects involve new problems associated with specialized machine learning architectures and designs that many data scientists have yet to tackle. But finding algorithms and designing and building platforms that deal with large sets of data is a growing need. Data scientists have to manage and maintain increasingly complex data projects, and with the rise of big data comes an increasing demand for computational and algorithmic efficiency. Large Scale Machine Learning with Python uncovers a new wave of machine learning algorithms that meet scalability demands together with a high predictive accuracy. Dive into scalable machine learning and the three forms of scalability. Speed up algorithms that can be used on a desktop computer with tips on parallelization and memory allocation. Get to grips with new algorithms that are specifically designed for large projects and can handle bigger files, and learn about machine learning in big data environments. We will also cover the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. Style and Approach This efficient and practical title is stuffed full of the techniques, tips and tools you need to ensure your large scale Python machine learning runs swiftly and seamlessly. Large-scale machine learning tackles a different issue to what is currently on the market. Those working with Hadoop clusters and in data intensive environments can now learn effective ways of building powerful machine learning models from prototype to production. This book is written in a style that programmers from other languages (R, Julia, Java, Matlab) can follow.
Large Scale Machine Learning with Python

Author: Gerardus Blokdyk
language: en
Publisher: Createspace Independent Publishing Platform
Release Date: 2018-03-29
What is Large Scale Machine Learning with Python's impact on utilizing the best solution(s)? What sources do you use to gather information for a Large Scale Machine Learning with Python study? What situation(s) led to this Large Scale Machine Learning with Python Self Assessment? How do you manage and improve your Large Scale Machine Learning with Python work systems to deliver customer value and achieve organizational success and sustainability? Are there any constraints known that bear on the ability to perform Large Scale Machine Learning with Python work? How is the team addressing them? Defining, designing, creating, and implementing a process to solve a challenge or meet an objective is the most valuable role... In EVERY group, company, organization and department. Unless you are talking a one-time, single-use project, there should be a process. Whether that process is managed and implemented by humans, AI, or a combination of the two, it needs to be designed by someone with a complex enough perspective to ask the right questions. Someone capable of asking the right questions and step back and say, 'What are we really trying to accomplish here? And is there a different way to look at it?' This Self-Assessment empowers people to do just that - whether their title is entrepreneur, manager, consultant, (Vice-)President, CxO etc... - they are the people who rule the future. They are the person who asks the right questions to make Large Scale Machine Learning with Python investments work better. This Large Scale Machine Learning with Python All-Inclusive Self-Assessment enables You to be that person. All the tools you need to an in-depth Large Scale Machine Learning with Python Self-Assessment. Featuring 723 new and updated case-based questions, organized into seven core areas of process design, this Self-Assessment will help you identify areas in which Large Scale Machine Learning with Python improvements can be made. In using the questions you will be better able to: - diagnose Large Scale Machine Learning with Python projects, initiatives, organizations, businesses and processes using accepted diagnostic standards and practices - implement evidence-based best practice strategies aligned with overall goals - integrate recent advances in Large Scale Machine Learning with Python and process design strategies into practice according to best practice guidelines Using a Self-Assessment tool known as the Large Scale Machine Learning with Python Scorecard, you will develop a clear picture of which Large Scale Machine Learning with Python areas need attention. Your purchase includes access details to the Large Scale Machine Learning with Python self-assessment dashboard download which gives you your dynamically prioritized projects-ready tool and shows your organization exactly what to do next. Your exclusive instant access details can be found in your book.
Pro Machine Learning Algorithms

Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so that you get a practical understanding of all the levers that can be tuned in a model, before implementing the models in Python/R. You will cover all the major algorithms: supervised and unsupervised learning, which include linear/logistic regression; k-means clustering; PCA; recommender system; decision tree; random forest; GBM; and neural networks. You will also be exposed to the latest in deep learning through CNNs, RNNs, and word2vec for text mining. You will be learning not only the algorithms, but also the concepts of feature engineering to maximize the performance of a model. You will see the theory along with case studies, such as sentiment classification, fraud detection, recommender systems, and image recognition, so that you get the best of both theory and practice for the vast majority of the machine learning algorithms used in industry. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers. You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning project with confidence. What You Will Learn Get an in-depth understanding of all the major machine learning and deep learning algorithms Fully appreciate the pitfalls to avoid while building models Implement machine learning algorithms in the cloud Follow a hands-on approach through case studies for each algorithm Gain the tricks of ensemble learning to build more accurate models Discover the basics of programming in R/Python and the Keras framework for deep learning Who This Book Is For Business analysts/ IT professionals who want to transition into data science roles. Data scientists who want to solidify their knowledge in machine learning.