Large Networks And Graph Limits


Download Large Networks And Graph Limits PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Large Networks And Graph Limits book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Large Networks and Graph Limits


Large Networks and Graph Limits

Author: László Lovász

language: en

Publisher: American Mathematical Soc.

Release Date: 2012


DOWNLOAD





Recently, it became apparent that a large number of the most interesting structures and phenomena of the world can be described by networks. To develop a mathematical theory of very large networks is an important challenge. This book describes one recent approach to this theory, the limit theory of graphs, which has emerged over the last decade. The theory has rich connections with other approaches to the study of large networks, such as ``property testing'' in computer science and regularity partition in graph theory. It has several applications in extremal graph theory, including the exact formulations and partial answers to very general questions, such as which problems in extremal graph theory are decidable. It also has less obvious connections with other parts of mathematics (classical and non-classical, like probability theory, measure theory, tensor algebras, and semidefinite optimization). This book explains many of these connections, first at an informal level to emphasize the need to apply more advanced mathematical methods, and then gives an exact development of the theory of the algebraic theory of graph homomorphisms and of the analytic theory of graph limits. This is an amazing book: readable, deep, and lively. It sets out this emerging area, makes connections between old classical graph theory and graph limits, and charts the course of the future. --Persi Diaconis, Stanford University This book is a comprehensive study of the active topic of graph limits and an updated account of its present status. It is a beautiful volume written by an outstanding mathematician who is also a great expositor. --Noga Alon, Tel Aviv University, Israel Modern combinatorics is by no means an isolated subject in mathematics, but has many rich and interesting connections to almost every area of mathematics and computer science. The research presented in Lovasz's book exemplifies this phenomenon. This book presents a wonderful opportunity for a student in combinatorics to explore other fields of mathematics, or conversely for experts in other areas of mathematics to become acquainted with some aspects of graph theory. --Terence Tao, University of California, Los Angeles, CA Laszlo Lovasz has written an admirable treatise on the exciting new theory of graph limits and graph homomorphisms, an area of great importance in the study of large networks. It is an authoritative, masterful text that reflects Lovasz's position as the main architect of this rapidly developing theory. The book is a must for combinatorialists, network theorists, and theoretical computer scientists alike. --Bela Bollobas, Cambridge University, UK

Spectral Radius of Graphs


Spectral Radius of Graphs

Author: Dragan Stevanovic

language: en

Publisher: Academic Press

Release Date: 2014-10-13


DOWNLOAD





Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the book delves deeper into the properties of the principal eigenvector; a critical subject as many of the results on the spectral radius of graphs rely on the properties of the principal eigenvector for their proofs. A following chapter surveys spectral radius of special graphs, covering multipartite graphs, non-regular graphs, planar graphs, threshold graphs, and others. Finally, the work explores results on the structure of graphs having extreme spectral radius in classes of graphs defined by fixing the value of a particular, integer-valued graph invariant, such as: the diameter, the radius, the domination number, the matching number, the clique number, the independence number, the chromatic number or the sequence of vertex degrees. Throughout, the text includes the valuable addition of proofs to accompany the majority of presented results. This enables the reader to learn tricks of the trade and easily see if some of the techniques apply to a current research problem, without having to spend time on searching for the original articles. The book also contains a handful of open problems on the topic that might provide initiative for the reader's research. - Dedicated coverage to one of the most prominent graph eigenvalues - Proofs and open problems included for further study - Overview of classical topics such as spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem

Probabilistic Foundations of Statistical Network Analysis


Probabilistic Foundations of Statistical Network Analysis

Author: Harry Crane

language: en

Publisher: CRC Press

Release Date: 2018-04-17


DOWNLOAD





Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane’s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane’s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND’s Project AIR FORCE.